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CHAPTER 1: INTRODUCTION 
 
Cancer drug resistance represents a significant challenge in current cancer 
therapeutics 
 
 Systemic chemotherapeutics for metastatic and hematologic cancer 

patients were introduced as early as the 1940s (DeVita Jr and Chu 2008).  Over 

a hundred drugs have since been designed and approved to treat various 

cancers (Baldo and Pham 2013), with mechanisms ranging from disrupting 

general cellular processes to targeting cancer-specific molecular markers, and 

chemotherapy is currently one of the principal methods of cancer treatment.  The 

key rationale behind the development of these various agents is to attack rapidly 

dividing tumor cells from multiple angles.  We are currently in a “War on Cancer,” 

and the generally accepted strategy to win this war and destroy the enemy is to 

aggressively eliminate as many tumor cells as possible with the most powerful 

forces possible (e.g. high-dose chemotherapeutics) (Heng 2015). 

There have been advances in terms of extending patient lifespan and 

exceptional curative cases, ranging from the first effective combination 

chemotherapy programs for acute childhood leukemia, advanced Hodgkin’s 

disease and metastatic testicular cancer (Li, Whitmore et al. 1960; DeVita Jr and 

Chu 2008), to the specific molecular targeting triumphs of chronic myeloid 

leukemia in the chronic phase and Pml-Rara-positive acute promyelocytic 

leukemia (Druker, Tamura et al. 1996; Druker, Sawyers et al. 2001; Hu, Liu et al. 

2009).  Unfortunately, with exception of a very low minority of “lucky” patients 

with greatly improved survival (many cancer types/regimens/agents have their 
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exceptional cases), resistance to chemotherapy and molecular targeted 

therapies is a major hindrance to effective therapy, and cancer drug resistance 

remains an inevitable consequence of the majority of cases (Baldo and Pham 

2013; Horne, Stevens et al. 2013). 

 In the current era of precision medicine, much effort has been placed on 

the identification and targeting of cancer-specific molecular markers with the aim 

to maximize tumor cell death while minimizing toxicity to normal, healthy cells.  

The hypothesis behind this strategy seems very solid.  Cancer is understood by 

many as the result of a number of specific gene mutations.  If these mutations 

could be targeted, cancer cells could then be effectively eliminated.  Major 

advances in technology including high-throughput genome sequencing and 

microarray analyses have been employed to identify many candidate molecular 

targets in cancers, with the hope of pinpointing key pathways by which tumor 

cells require in order to thrive, providing Achilles’s heels that could be targeted to 

eradicate cancer (Horne, Stevens et al. 2013).   

This strategy of targeting “oncogene addiction” has been largely 

influenced by one of the great success stories in molecular medicine, the 

targeting of chronic myeloid leukemia patients in the chronic phase with imatinib.  

The molecular characterization of chronic myeloid leukemia revealed a 

translocation of chromosomes 9 and 23 (now commonly referred to as the 

“Philadelphia chromosome”), which results in the de novo formation of the Bcr-

Abl fusion oncogene, a constitutively active form of the Abl tyrosine kinase 
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(Nowell and Hungerford 1960; Rowley 1973).  Bcr-Abl kinase hyperactivity is 

associated with enhanced proliferation and growth factor independence while 

reducing apoptosis (Jabbour, Hochhaus et al. 2010; Zhang and Rowley 2011).  

Furthermore, in the vast majority of chronic myeloid leukemia patients in the 

chronic phase, the Philadelphia chromosome (and thus the presence of the Bcr-

Abl fusion gene) represents the sole chromosome aberration observed in 

leukemia cells (Johansson, Fioretos et al. 2002).  The mutant Bcr-Abl kinase 

represented a specific cancer target not observed within normal, healthy somatic 

cells, and it was proposed that if this gene could be targeted, the cancer could be 

cured.  Imatinib was developed to inhibit the activity of the Bcr-Abl kinase by 

blocking the ATP-binding site, suppressing kinase signaling and inducing cell 

death (Druker, Tamura et al. 1996; Druker, Sawyers et al. 2001).  Results have 

been impressive for chronic myeloid leukemia patients in the chronic phase, with 

a seven-year overall survival rate of 86% (Jabbour, Hochhaus et al. 2010), and 

imatinib is currently accepted as the standard of care for chronic phase patients 

(Horne, Stevens et al. 2013). 

 Unfortunately, this overwhelming success has yet to be repeated for the 

vast majority of solid tumors, which represent 90% of all malignancies (Heng, Liu 

et al. 2010; Horne, Stevens et al. 2013).  Most solid tumors do not follow the 

clonal, stepwise expansion model observed in select stages of hematological 

cancers such as the chronic phase of chronic myeloid leukemia (Johansson, 

Fioretos et al. 2002).  Rather, cancer progression of most solid tumors consists 
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of both highly dynamic, stochastic phases as well as periods of stepwise, 

Darwinian progression (Heng, Stevens et al. 2006; Navin, Kendall et al. 2011; 

Heng 2015; Horne, Ye et al. 2015a).  Most solid tumors are also marked by high 

degrees of genome heterogeneity, where even tumors of the same type will often 

display unique mutations and karyotypes (Heppner and Miller 1998; Heng, 

Stevens et al. 2004; Heng, Stevens et al. 2006; Losi, Baisse et al. 2005; Merlo, 

Pepper et al. 2006).  This heterogeneity has been further confirmed using high-

throughput DNA sequencing (Gerlinger, Rowan et al. 2012).  Realization of these 

key evolutionary and cell population differences between exceptional 

hematological cases and the vast majority of solid tumors was recently 

accomplished with application of the genome theory of cancer evolution, solving 

the puzzle regarding the shortcomings of targeting cancer therapy for the 

majority of cases (Horne, Stevens et al. 2013). 

 Even for chronic myeloid leukemia, when heterogeneity is high (especially 

at the genome level), the power of targeting therapy is lost.  The efficacy of 

imatinib sharply declines as chronic myeloid leukemia progresses from the more 

homogenous chronic phase to the highly heterogeneous “blast crisis” stage.  

Complete cytogenetic response in early chronic phase patients placed on 

imatinib is approximately 80%, and this falls to approximately 8% in the blast 

crisis stage (Radich 2007).  This advanced stage resembles the majority of solid 

tumors, displaying increased genomic instability and genetic changes at multiple 

levels (Horne, Stevens et al. 2013).  The frequency of additional chromosomal 
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abnormalities beyond the Philadelphia chromosome is approximately 7% in 

chronic phase patients and jumps to 40-70% in later stages (Skorski 2011).  The 

median survival time of patients in blast crisis is measured in months (Assouline 

and Lipton 2011).  It is worth noting that the linkage between genomic instability 

and poor prognosis has been documented in both hematologic and solid cancer 

patients (Nishizaki, Harada et al. 2002; Nakamura, Saji et al. 2003; Caraway, 

Thomas et al. 2008; Sato, Uzawa et al. 2010; Zamecnikova, Al Bahar et al. 

2010).  This complicates the treatment of most cancers further, because the 

heterogeneity observed at multiple levels is associated with drug resistance. 

Current molecular understandings of cancer drug resistance  

  Several molecular mechanisms have been associated with drug 

resistance against the wide array of general chemotherapeutic and specific-

targeting agents administered to patients (Table 1).  These mechanisms range 

widely and include mutations of a drug target, increased expression of a drug 

target, activation of DNA repair mechanisms, alterations of drug metabolism, 

inactivation of cell death pathways, activation of survival signaling pathways, 

increased rates of drug efflux through activation and overexpression of 

membrane-bound transporter proteins, epigenetic mechanisms such as the 

inactivation of genes through methylation that are essential to the conversion of 

the inactive administered drugs to their active state, amplification of a drug target, 

downregulation or mutations of enzymes involved in drug inactivating metabolic 

pathways, and activation of alternative signaling pathways (Saunders, Simpson  
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Table 1: Overview of select cancer drug resistance mechanisms to 
commonly administered chemotherapeutic and specific-targeting agents 
 
Therapeutic 
Agent/Drug 
Class 

General or 
Targeting 
Agent 

Cancer 
Type(s) 

Drug Target Mechanism(s) of 
Resistance 

References 

Antimetabolites 
(e.g. 5-
fluorouracil, 
methotrexate) 

General Lymphoma, 
leukemia, 
ovarian 
cancer, 
breast 
cancer, 
colorectal 
cancer, 
pancreatic 
cancer, 
gastric 
cancer, head 
and neck 
cancer 

Thymidylate 
synthase, 
DNA 
synthesis 

Elevated 
thymidylate 
synthase 
expression, 
activation of 
survival pathways 
(e.g. ERBB 
signaling 
pathways), MLH1 
hypermethylation, 
elevated 
expression of 
anti-apoptotic 
proteins 

(Miyashita and 
Reed 1992; 
Johnston, Lenz 
et al. 1995; 
Brown, Hirst et 
al. 1997; Chen, 
Dai et al. 2007; 
Hurwitz, Stasik 
et al. 2012) 

Bevacizumab Targeting Non-small 
cell lung 
cancer, 
colorectal 
cancer, renal 
cell 
carcinoma, 
glioblastoma 

VEGF Alternative 
signaling 
pathways 
activation (e.g. 
IGF1R, PDGFR), 
tumor dormancy 
induction 

(Piao, Liang et 
al. 2012; 
Jahangiri, De 
Lay et al. 2013) 

Bortezomib Targeting Mantle cell 
lymphoma 
and multiple 
myeloma 

Proteasome Anti-apoptotic 
mechanisms, 
bortezomib 
binding site 
mutations 

(Oerlemans, 
Franke et al. 
2008; Busacca, 
Chacko et al. 
2013) 

Cetuximab Targeting Colorectal 
cancer and 
head and 
neck cancer 

EGFR KRAS mutation, 
cetuximab binding 
inhibited by 
EGFR-S492R 
mutation 

(Lièvre, Bachet 
et al. 2006; 
Montagut, 
Dalmases et al. 
2012) 

Crizotinib Targeting Non-small 
cell lung 
cancer 

EML4-ALK CD74-ROS1 
rearrangement, 
secondary EML4-
ALK mutation or 
rearrangment 

(Shaw, Yeap et 
al. 2011; 
Bergethon, 
Shaw et al. 
2012; Camidge, 
Bang et al. 
2012) 

Gefitinib Targeting Non-small 
cell lung 
cancer 

EGFR Epigenetic 
mechanisms, 
elevated ERBB 
family signaling 

(Van 
Schaeybroeck, 
Karaiskou-
McCaul et al. 
2005; Li, Wu et 
al. 2013) 

Imatinib Targeting Chronic 
myeloid 
leukemia 

BCR-ABL Target mutations (Shah, Tran et 
al. 2004; 
Deininger, 
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Buchdunger et 
al. 2005) 

Microtubule-
targeted agents 
(e.g. docetaxel, 
paclitaxel) 

General Breast 
cancer, 
ovarian 
cancer, lung 
cancer, head 
and neck 
cancer 

Tubulin Mutations in 
tubulin, multi-drug 
resistance 1 
transporter 
overexpression 

(Giannakakou, 
Sackett et al. 
1997; 
Duesberg, 
Stindl et al. 
2000; 
Kavallaris, Tait 
et al. 2001; 
Thomas and 
Coley 2003; 
Swanton, Nicke 
et al. 2009) 

Nilotinib Targeting Chronic 
myeloid 
leukemia 

BCR-ABL BCR-ABL 
upregulation 

(Mahon, 
Hayette et al. 
2008; Camgoz, 
Gencer et al. 
2013) 

Platinum 
agents (e.g. 
cisplatin) 

General Lymphoma, 
testicular 
cancer, 
ovarian 
cancer, 
sarcoma, 
small-cell 
lung 
carcinoma 

DNA Elevated DNA 
repair, reduced 
cellular uptake, 
elevated efflux, 
MLH1 
hypermethylation 

(Fink, Aebi et 
al. 1998; 
Thomas and 
Coley 2003; 
Usanova, Piée-
Staffa et al. 
2010) 

Topoisomerase 
I and 
topoisomerase 
II inhibitors 
(e.g. 
doxorubicin, 
etoposide, 
irinotecan) 

General  Colorectal 
cancer, 
leukemia, 
glioblastoma, 
small-cell 
lung 
carcinoma, 
lymphoma, 
Ewing’s 
sarcoma, 
testicular 
cancer 

Topoisomer-
ase I and II 

Multi-drug 
resistance 1 
transporter 
overexpression, 
drug efflux, 
topoisomerase 
mutations, p53 
mutation, reduced 
topoisomerase 
expression 

(Sugimoto, 
Tsukahara et 
al. 1990; Bugg, 
Danks et al. 
1991; Miyashita 
and Reed 1992; 
Thomas and 
Coley 2003) 

Trastuzumab Targeting ERBB2-
positive 
breast 
cancer 

ERBB2 Alternative 
signaling pathway 
activation, loss of 
PTEN, ERBB2 
mutation,  

(Lu, Zi et al. 
2001; Nagata, 
Lan et al. 2004; 
Recupero, 
Daniele et al. 
2013) 

Vemurafenib Targeting Melanoma BRAF-
V600E 

KRAS, MEK1, 
NRAS mutations 

(Nazarian, Shi 
et al. 2010; 
Wagle, Emery 
et al. 2011) 
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et al. 2012; Holohan, Van Schaeybroeck et al. 2013; Zahreddine, Borden et al. 

2013; Hu and Zhang 2016).   

 Immunotherapy is an emerging therapeutic approach that has gained 

excitement through early successes of inducing long-term tumor regression 

(Restifo, Dudley et al. 2012; Restifo, Smyth et al. 2016).  The strategy behind 

immunotherapy involves the transfer of either gene-engineered or naturally 

occurring T-cells that target specific antigens expressed by tumor cells to 

patients.  Despite early promise, there are examples of proposed resistance 

mechanisms to immunotherapy (Restifo, Smyth et al. 2016).  This includes the 

complete loss of β2 microglobulin observed in patient tumor samples.  β2 

microglobulin is a component of major histocompatibility complex class I 

molecules, which present peptides to the therapeutic CD8+ T-cells.   

 Despite many successes of various therapies based on these varying 

molecular mechanisms (each showing promising results in in vitro studies and in 

many animal models, as well as improved response in some patients), with few 

exceptions, drug resistance universally occurs rather rapidly.  This is even the 

case for current, very promising immunotherapy, indicating an important mission 

to search for the most common mechanism of drug resistance beyond diverse 

molecular mechanisms. 

 As discussed, the intended result of the administration of high-dose 

general and specific-targeting therapeutics is the maximal induction of tumor cell 

death.  A survival strategy utilized by tumor cells was recently introduced that 
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occurs in response to high-level stress, and this strategy was termed “genome 

chaos” (Heng, Stevens et al. 2006; Heng, Liu et al. 2011; Liu, Stevens et al. 

2014; Heng 2015).  This process consists of rapid genome (i.e. karyotypic) 

fragmentation and re-organization, followed by the formation of chaotic genomes 

and the potential to establish new, stable genomes (i.e. different karyotypes), 

despite the initial massive cell death that comes as a cost to triggering genome 

chaos.  Chromosome fragmentation and genome chaos have been induced by 

various stresses, including loss of gene function (e.g. ATM, ATR, p53), oxidative 

stress, temperature change and different types of drug treatment at high-dose 

concentrations (e.g. docetaxel, doxorubicin, methotrexate, mitomycin-C) 

(Stevens, Liu et al. 2007; Stevens, Abdallah et al. 2011; Liu, Stevens et al. 2014).  

The terminology of “karyotypic chaos” and “chromosome chaos” were initially 

used to describe these extensive chromosomal changes in addition to genome 

chaos (Heng, Stevens et al. 2006; Duesberg 2007; Heng 2007; Heng, Liu et al. 

2011). 

 The logical question for us was, could such genome evolutionary-based 

mechanism serve as the framework to explain the ultimate failure that is cancer 

drug resistance?  However, this idea was largely ignored by research 

communities, due to gene mutation-centric cancer research.  For decades, 

genome level alteration (e.g. rapid genome re-organization induced by drug 

treatment) has been considered by most researchers as insignificant artifacts, as 
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it was impossible to imagine these massively altered genomes as survivable 

(Heng 2015). 

  Genome chaos has recently become a hot topic in cancer research, 

because chaotic genomes have been confirmed as a result of the cancer 

genome sequencing project using advanced high-throughput DNA sequencing of 

numerous clinical samples.  They are no longer considered as in vitro artifacts 

because these can be detected in most cancer patients.  Furthermore, they are 

also detected in normal tissue types, earlier developmental stages, as well as 

other diseases (Ye, Liu et al. 2007; Iourov, Vorsanova et al. 2008; Celton-Morizur 

and Desdouets 2010; Davoli and de Lange 2011; Fragouli and Wells 2011; 

Iourov, Vorsanova et al. 2012a; Iourov, Vorsanova et al. 2012b; Heng, Liu et al. 

2013; Hojsak, Gagro et al. 2013; Hultén, Jonasson et al. 2013; Horne and Heng 

2014).   

Many new terms have been introduced to describe chromosome 

fragmentation and re-organization, including “chromothripsis,” “chromoplexy,” 

“chromoanagenesis,” “chromoanasynthesis,” “chromosome catastrophes,” and 

“structural mutations” (Liu, Erez et al. 2011; Meyerson and Pellman 2011; 

Stephens, Greenman et al. 2011; Tubio and Estivill 2011; Crasta, Ganem et al. 

2012; Forment, Kaidi et al. 2012; Holland and Cleveland 2012; Inaki and Liu 

2012; Jones and Jallepalli 2012; Righolt and Mai 2012; Setlur and Lee 2012; 

Baca, Prandi et al. 2013; Malhotra, Lindberg et al. 2013).  Furthermore, rapidly 

generated re-organized genomes have been detected within various types of 
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cancer, and these chaotic genomes have been displayed in the majority of cases 

of some cancer types (Heng, Liu et al. 2011; Heng, Stevens et al. 2011; 

Stephens, Greenman et al. 2011; Baca, Prandi et al. 2013).  Understanding the 

importance of genome chaos as it pertains to cancer drug resistance would be 

realized in the context of genome-mediated cancer evolution (Liu, Stevens et al. 

2014; Heng 2015). 

Macro-cellular evolution mediated genome heterogeneity plays a critical 
role in cancer drug resistance 
 

The two phases of cancer evolution were originally based on the 

karyotypic pattern observed in an immortalization model where both clonal and 

non-clonal expansions were detected (Heng, Stevens et al. 2006).  These were 

recently confirmed in breast cancer using single cell level genome sequencing 

(Navin, Kendall et al. 2011; Wang, Waters et al. 2014).  Cancer evolution is a 

series of genome-mediated system replacements occurring in dynamic cycles of 

non-clonal chromosome aberrations (NCCAs) and clonal chromosome 

aberrations (CCAs) within the two evolutionary phases (Figure 1).  In the 

stepwise phase, the majority of cells are clonal across generations, and 

karyotypic diversification is traceable.  The punctuated phase is characterized 

with a high frequency of NCCAs and massive genome reorganization, which 

break multiple system constraints (e.g. genome integrity, tissue architecture, 

etc.).  Thus, cancer progression consists of both macro-cellular (genome system 

replacement) and micro-cellular (modification and diversification of the genome-

defined system) evolution.  There is recent increased support for the macro- 
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Figure 1.  Stochastic model of genome-mediated cancer evolution.  Cancer 
evolution is divided into two distinct evolutionary phases, the punctuated 
stochastic phase (or macro-evolutionary phase) and the stepwise gradual phase 
(or micro-evolutionary phase).  Punctuated phases are marked by extreme 
heterogeneity and rapid genome changes, represented by genome system 
changes over time, with each shape representing a unique genome system.  
Different chromosomes are designated by color (red, yellow, blue) and drawn 
within the nucleus below the corresponding system.  Genes are designated A, B, 
C, D, E, F within the chromosomes, and corresponding protein networks are 
illustrated below by the relationships between proteins A, B, C, D, E, F.  The 
punctuated phase is caused by system instability-mediated macro-cellular 
evolution, resulting in high NCCA frequency illustrated by different genome 
systems (shapes), topologies (karyotypes, including numerical and/or structural 
chromosome aberrations), and protein interactive networks.  Following selection 
pressure, a unique genome system survives (circle).  In contrast to genomes in 
the punctuated phase, this genome system in the stepwise phase remains 
relatively stable over time, although it does acquire low-level changes 
(represented by pie piece changes) such as gene mutations, epigenetic 
alterations and/or small traceable genome-level alterations that aide in 
adaptation.  Genetic/epigenetic alteration is indicated by asterisks (*) in the 
protein network.  These micro-cellular changes can be classified into clonal 
expansion and diversification.  Thus, the stepwise phase is mainly associated 
with system stability and micro-cellular evolution.  Only one run of the 
NCCA/CCA cycle is presented.  Figure reproduced from Horne, Wexler et al. 
2015 with permission from http://AtlasGeneticsOncology.org.  
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micro phases of evolution in cancer concept (Klein 2013). 

The importance of genome chaos in cancer evolution was realized with 

the incorporation of the concept of genome topology-defined system inheritance. 

Under the genome theory of cancer evolution, which has been developed in the 

laboratory of Dr. Henry Heng for over a decade, new karyotypes define new 

system inheritance, as similar gene content can result in different inheritance by 

altering the interactive relationships of genes or three-dimensional genomic 

topology (Heng, Stevens et al. 2006; Heng 2009; Heng, Stevens et al. 2010; 

Heng, Liu et al. 2011; Horne, Ye et al. 2015a).  In organismal evolution, the main 

function of sexual reproduction is to preserve the karyotype (or species-specific 

system), thus preserving system inheritance (Wilkins and Holliday 2009; Gorelick 

and Heng 2011; Heng, Liu et al. 2011).  This differs from cancer, where the 

cancer genome needs to change to form new systems for a shot at survival, as 

drastically altered chromosome structure functions as a systems oncogenic 

organizer (Inaki and Liu 2012).  Further, genome chaos and genome instability 

have been linked with elevated transcriptome dynamics and increased 

evolutionary potential (Stevens, Liu et al. 2014).  To summarize, as a result of 

drug-induced genome chaos, genome heterogeneity is drastically increased 

through the rapid formation of new genome systems.  This gives cancer the 

opportunity to survive, as some of these new systems are fit to survive the crisis 

event (e.g. drug treatment) and clonally expand.  Considering the stochastic 

nature of generating new systems through genome chaos, this can explain the 
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many different molecular mechanisms discussed that have been identified in 

cancer cells and previously associated with cancer drug resistance.  Clonal 

expansion during the stepwise phase (after drug treatment and selection) may 

result in a cell population expressing a particular gene or pathway that is easily 

detectable.  However, considering that cancer evolution is a highly dynamic 

process that includes new system formation, that gene or pathway does not 

reflect on the overall process of drug resistance, and the role of a particular gene 

or pathway may change over time, between patients, and may differ from cell to 

cell. 

 It should be pointed out that the theoretical thinking that linked the 

karyotype as a new layer of genetic coding (or blueprint) and that altered 

genomes represent new biosystems with new network structures is essential to 

understanding genome-mediated drug resistance.  It provides insight to how 

massive genome changes promote the formation of new systems during cancer 

drug resistance.  If these dynamic, drastically changing identities are emergent 

new systems, it is no wonder that some of these could become dominant in the 

face of the high selective pressure of high-dose therapeutics.  The next question 

is, what is the detailed picture of the outliers being selected when there are so 

many cells with different genomes? 

 Recent study of heterogeneous cell populations demonstrated the power 

of outliers in terms of cancer progression and emergent features such as growth 

(Abdallah, Horne et al. 2013).  Using single-cell and population-based assays of 
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karyotypically stable and unstable cells, it was shown that, within a 

heterogeneous cell population, outliers dominantly contributed to overall cell 

population growth through rapid proliferation.  These findings can be extended to 

the importance of drug-induced individual chaotic genomes in cancer drug 

resistance.  While unstable, these outlier genomes can rapidly evolve until stable 

clones emerge and thrive, representing the only chance for survival under 

aggressive drug treatment.  While the majority of cells may be eliminated through 

high-dose therapeutic regimens, the formation of aggressive outlier subgroups 

through genome chaos may be sufficient to drive cancer progression post-

treatment and rapidly generate lost tumor cell counts.  We explore this further in 

Chapter 2. 

The adaptive function of stress-induced genome alteration 

 Genome alteration has adaptive function under stress.  We previously 

introduced an evolutionary trade-off between stress, genomic adaptation and the 

onset of common diseases (Horne, Chowdhury et al. 2014), providing a basis for 

the many common diseases that lack a clear, causative molecular linkage or 

heritable factor.  High-level genome alterations and elevated genome instability 

have been reported in a wide variety of common diseases.  These include 

Alzheimer’s disease, autism, Gulf War illness, Crohn’s disease and chronic 

fatigue syndrome (Ye, Liu et al. 2007; Iourov, Vorsanova et al. 2008; Iourov, 

Vorsanova et al. 2012a; Iourov, Vorsanova et al. 2012b; Heng, Liu et al. 2013; 

Hojsak, Gagro et al. 2013; Heng, Horne et al. 2016).  Surprisingly, genome 
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alterations have also been observed in various normal, healthy tissues, which 

include the polyploidization of liver cells, skeletal muscle, placenta, ovary, thyroid 

gland, urothelium, blood, blastocyst mosaicism, Purkinje neurons, trisomy 21 

mosaicism in the general population, as well as detected stochastic karyotypic 

changes as the result of environmental and physiological challenges (Biesterfeld, 

Gerres et al. 1994; Heng, Stevens et al. 2004; Celton-Morizur, Desdouets et al. 

2010; Davoli and de Lange 2011; Fragouli and Wells 2011; Hultén, Jonasson et 

al. 2013).  In addition, recent whole genome sequencing of healthy individuals 

revealed increased genome-level alteration (1000 Genomes Project Consortium, 

Abecasis et al. 2012).  It is understood that cells at any given time are subject to 

various internal and external stresses, under either normal physiological or 

pathological conditions.  Stress, in general, results in many infrequent genome 

alterations (Heng, Stevens et al. 2004; Heng, Stevens et al. 2006).  Genome-

level alterations are more effective at drastically changing the genetic system 

than gene mutation or epigenetic change.  This suggests that stress-induced 

genome level change could effectively provide an adaptive advantage for cells 

against high levels of environmental stress.  Further, genome diversity within 

normal, healthy tissues allows for complex organ function while providing the 

genome heterogeneity (or robustness) necessary to account for organ-function 

associated stress (e.g. liver-mediated blood detoxification).  We concluded that 

stress-induced heterogeneity is necessary for successful adaptation to occur, but 

the trade-off is potential disease onset (Horne, Chowdhury et al. 2014; Horne, 
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Pollick et al. 2015; Heng 2015; Heng, Horne et al. 2016).  Taking into account the 

new function of sexual reproduction as a constraint and filter to eliminate large-

scale genome aberrations from the germline, we understood how system 

dynamics are promoted for short-term adaptation at the individual level, while the 

accumulation and passing of alterations to offspring is prevented, and this 

realization provided clarification behind the “missing inheritability” of many 

common diseases (Heng 2010). 

The majority of cancer drug resistance research and discussion has 
neglected the macro-cellular evolutionary phase of cancer 
 

Cancer drug resistance is often regarded in two categories: intrinsic or 

acquired.  Intrinsic resistance would suggest that pre-existing factors (e.g. 

increased drug efflux, mutations of drug targets) involved in drug resistance are 

present within cells prior to treatment.  Upon treatment, tumor cells sensitive to 

the treatment would be eliminated, and those that are resistant continue to thrive.  

Acquired cancer drug resistance is considered as drug resistance that develops 

during treatment of tumor cells that were initially sensitive, and this can be the 

result of mutations of drug targets as well as through other adaptive responses 

such as increased expression of therapeutic targets, activation of alternative 

compensatory signaling pathways, epigenetic changes, activation of survival 

signaling pathways, activation of DNA repair processes, inactivation of 

downstream cell death signaling pathways, alterations of drug metabolism and 

increased rates of drug efflux (Saunders, Simpson et al. 2012; Holohan, Van 

Schaeybroeck et al. 2013; Zahreddine and Borden 2013; Hu and Zhang 2016).  
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From an evolutionary perspective, most cancer drug resistance study and 

discussion pertains to the micro-evolutionary phase.  This is due to the emphasis 

made on lower level alterations (e.g. gene mutations, epigenetic changes, 

expression changes) that are proposed to either be selected for upon treatment 

or emerge during treatment in a stepwise, gradual manner resulting in cancer 

drug resistance.  However, macro-cellular evolution plays a major role in cancer 

drug resistance through the formation of new genome systems that survive 

therapy and recovery.  Considering that this highly dynamic phase can be 

triggered by high-dose therapeutics, which represents the current standard of 

care, problems regarding cancer drug resistance will not be solved without 

accounting for macro-cellular cancer evolution. While lower level genetic change 

can potentially be useful in understanding exceptional cancer cases, notably 

those of high karyotypic homogeneity (e.g. Bcr-Abl fusion gene positive chronic 

myeloid leukemia patients in the chronic phase, Pml-Rara fusion gene positive 

acute promyelocytic leukemia patients) as well as physiological conditions, it falls 

short in providing clinically relevant explanations for cases where genome 

heterogeneity is high (Horne, Stevens et al. 2013).  Unfortunately, this is the 

situation for the vast majority of cancers, as these are marked by high degrees of 

intra- and inter-tumor genome heterogeneity at multiple genetic and non-genetic 

levels (Heppner 1984; Heng, Bremer et al. 2009).  
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Overview 

Here, cancer drug resistance is elucidated through application of macro-

cellular cancer evolutionary theory, which should explain the common failure of 

aggressively treating against diverse molecular mechanisms and provide new 

thinking for how to deal with this key challenge.  In Chapter 2, using 

experimentation and analysis designed to account for both heterogeneity (i.e. 

genome, cell growth) and monitor long-term system behavior, we identify a 

general adaptive mechanism of cancer drug resistance that is triggered by high-

dose therapeutics.  This is a transition that illustrates a key clinical paradox 

between initial effective tumor cell killing with high-dose treatment and robust, 

long-term cancer drug resistance.  It is comprised of the following: first, drug-

induced genome chaos (rapid genome fragmentation and reorganization); 

second, increased genome heterogeneity, the necessary pre-condition for the 

formation of aggressive outliers; and third, aggressive outlier-driven progression, 

represented by the emergence of new features such as rapid proliferation.  In 

Chapter 3, we search for a conceptual framework to accurately study the pattern 

of cancer evolution, which accounts for both heterogeneity and outlier 

contributions rather than focusing on specific patterns and initial killing impact.  

This analysis includes defining key parameters for studying heterogeneous 

populations under stress, prioritizing genetic levels to construct accurate 

understandings of complex diseases including cancer, shifting research focus to 

single cell resolution and classifying biomedical research studies to aide in 
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selecting informative analytical approaches.  From our synthesis in Chapter 3, 

proper conceptual framework is necessary in research as different analytical 

approaches lead to drastically different conclusions.  Such analysis is timely to 

the field of molecular cancer research, as there is a heated debate about the 

reliability of data.  This analysis will provide insight and guidance for experimental 

design and data collection for highly heterogeneous systems.  Finally, we provide 

conclusions and future directions in Chapter 4.  These include the call for in-

depth profiling and characterization of stress-induced aggressive outliers 

involved in cancer drug resistance (e.g. metabolics, phenotypic features beyond 

growth patterns), determination of therapeutic thresholds that trigger genome 

chaos, and points to consider from this project as they relate to current large-

scale efforts geared towards the curing of cancer, such as the Moon Shots 

Program. 
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CHAPTER 2: EFFECTIVE DRUG TREATMENT INDUCES DRUG 
RESISTANCE THROUGH RAPID GENOME ALTERATION-MEDIATED 
CANCER EVOLUTION 
 
Introduction 

 Cancer patients are typically treated at or near the maximum tolerated 

dose of cytotoxic drugs with the implicit goal to eliminate tumor cells at maximal 

rate (Marshall 2012).  Tumor cell response is often transient, and therapy fails 

with rare exceptions due to the emergence of drug resistant populations.  The 

unfortunate clinical situation is, as therapy becomes more and more effective, 

acquired resistance also becomes more common (Gottesman 2002).  

Interestingly, mathematical and evolutionary modeling predicted that therapeutic 

intervention could provide selective pressure for the expansion of resistant 

variants (Maley, Reid et al. 2004; Pepper 2012), and initial drug response has 

been noted as “not a strong predictor of reduced mortality” (Pepper 2011).  

These models confirm a paradox of current cancer therapeutic strategies, where 

initially effective treatment, which eliminates a large number of tumor cells, also 

favors the formation of resistant clones.  Such paradox significantly contributes to 

the key gap between treatment response (i.e. initial killing power) and patient 

survival.  One evolutionary explanation has been that tumor cells are highly 

heterogeneous, and while effective initial treatment can wipe out the clonal 

population, other subpopulations including some cancer stem cells can take over, 

especially when drug treatment eliminates the competition (i.e. drug-sensitive 

tumor cells) of intrinsically resistant tumor cells for space and resources.  This 
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would provide the perfect opportunity for resistant cells to rapidly overgrow 

(Gatenby, Silva et al. 2009; Saunders, Simpson et al. 2012).  The specific 

mechanism of how treatment promotes resistance, however, has been unclear.  

Given the ultimate importance of this issue and the fact that rapid, developed 

drug resistance is common both in animal models and especially in the majority 

of patients, in vitro models are needed to dissect the entire evolutionary process 

of cancer drug resistance (from prior to treatment to weeks following 

administration) and to pinpoint the general mechanism. 

 A recently illustrated relationship between high stress and macro-cellular 

cancer evolution opened a new avenue for studying a general mechanism of 

drug resistance (Liu, Stevens et al. 2014; Horne, Ye et al. 2015a; Horne, Ye et al. 

2015b).  Drug treatment has been linked to genome chaos, a phenomenon 

characterized by rapid and massive genome reorganization induced by external 

and internal stresses (Heng, Stevens et al. 2006; Duesberg 2007; Heng 2007; 

Heng, Liu et al. 2011; Heng, Stevens et al. 2011; Liu, Stevens et al. 2014).  

Genome chaos has also been linked to elevated transcriptome dynamics 

(Stevens, Horne et al. 2013; Stevens, Liu et al. 2014), and some chaotic 

genomes with increased evolutionary potential (reflected by increased 

transcriptome dynamics) could function as “lucky outliers” and dominate a cancer 

cell population with new features such as increased cell growth (Abdallah, Horne 

et al. 2013). 
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 We thus hypothesized that the domination of outliers from drug-induced 

genome chaos might be the common mechanism of rapid drug resistance in 

cancer.  To test this hypothesis, we needed to illustrate the following: 1) high-

dose treatment eliminates more cells initially but also induces increased genome 

chaos; 2) induced high levels of heterogeneity and increased outliers, in 

particular, are responsible for the paradoxical transition from initial high cell death 

to robust drug resistance; and 3) surviving clones display altered genomes 

resulting from genome chaos, which differ from those displayed in populations 

prior to treatment.  To achieve this goal, in contrast to general approaches that 

mainly focus on cell death immediately following drug treatment, we follow the 

cell population dynamics for weeks until resistant clones become dominant.  

Overall growth, population diversity, survival rate and genome profiles have been 

recorded to understand the mechanism of drug resistance under high-dose 

treatment. 

Methods and Materials 

Cell lines and cell culture 

 HCT116 cell line was obtained from ATCC.  HCT116 cells were 

maintained in high-glucose DMEM media (Gibco), supplemented with 10% FBS 

(Gibco) and 1% Penicillin-Streptomycin solution (Hyclone).  Cell culture flasks 

and plates were incubated at 37oC and 5% CO2.  The cell line was checked and 

authenticated using spectral karyotyping methods. 

In situ doxorubicin cell population treatment and long-term culture 
counting 
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 Four hundred (400) HCT116 cells were plated in each of three culture 

flasks.  Immediately after plating, doxorubicin treatments (0, 50, 100nmol/L) were 

added to the flasks.  Treatments lasted 16 hours, and media was then replaced 

with fresh media.  Cells were maintained in culture for an additional 20 days, 

including media changes every 24-48 hours and culture splitting by trypsinization 

and dilution when cell culture confluence approached 70-80%.  Cell cultures from 

each flask were then trypsinized, and equal aliquots of cells were added into sets 

of 3-4 flasks.  Cells from a flask from each set would be trypsinized and counted 

using hemacytometer methods; one flask from each set would be counted per 

day for 3-4 days.  Doubling times from each set would be calculated based on 

the daily cell totals, and those would be used to calculate overall cell totals for 

each treatment condition.  After trypsinization and hemacytometer counting, 

equal aliquots of the cell cultures from the final flask of each set would be added 

in sets of 3-4 flasks, and this long-term cell culture and counting process would 

continue for a total of 85 days. 

In situ doxorubicin cell population treatment and post-recovery counting 

 For each trial (of nine), 5000 HCT116 cells were plated per well of six-well 

culture plates, totaling ten treatment and four untreated control samples per trial.  

In six of these trials, cells were plated for 24 hours before treated with 1.0ug/ml 

doxorubicin for two hours to induce genome chaos.  In the remaining three trials, 

cells were plated for 24 hours before treated with 0.1ug/ml doxorubicin for two 

hours as a low-dose regimen serving as validation of the high-dose trials.  
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Untreated control cells in all trials were treated with sterile water (doxorubicin 

vehicle).  Treatment was immediately followed by a brief 1x PBS wash and 

replaced with fresh media.  Cells remained in culture for 24 days to recover.  

Cells from each well were then trypsinized, and using hemacytometer methods, 

four aliquots of 1,000 cells from each sample were individually plated in wells of 

new 24-well plates and grown in culture for seven days.  Cell totals were then 

counted using hemacytometer methods and average totals were compared to 

untreated HCT116 control average totals. 

In situ doxorubicin treatment and post-recovery single cell-derived 
population counting 
 
 HCT116 cells grown in a T-25 culture flask were treated with 1.0ug/ml 

doxorubicin for two hours.  Treatment was immediately followed by a brief 1x 

PBS wash and replaced with fresh media.  After recovery, cells were released 

from the flask by mitotic shake-off, and using hemacytometer methods, 400 cells 

were plated in a new T-25 flask, labeled with grids.  Twenty single cells were 

identified, and growth was measured daily for five days.  Cell totals were 

calculated for all single-cell derived subpopulations and compared to untreated 

HCT116 controls. 

Multi-color chromosome painting and spectral karyotyping 

 To validate cell line identity and observe novel chromosome aberrations 

post-treatment, multi-color chromosome painting and spectral karyotyping were 

performed on mitotic spreads as previously described (Heng and Tsui 1993; Ye, 

Lu et al. 2001; Heng, Ye et al. 2003).  Briefly, cytogenetic slides were prepared, 
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denatured and hybridized with human painting probes.  After washing and 

spectral karyotyping detection, mitotic structures were captured using a charge 

coupled device camera. 

Statistical analysis 

Statistically significant differences between independent samples were 

evaluated nonparametrically using the Mann-Whitney-Wilcoxon test.  Degrees of 

cell total heterogeneity within different treatment conditions were determined 

through coefficient of variation calculations. Aggressive outliers were defined as 

outlier samples (greater than 1.5 times the interquartile range above the third 

quartile) that were also higher than all corresponding control samples.  Statistical 

analyses were performed using R and Microsoft Excel software. 

Results 

The transition between initial, effective cell death and resistance was 
observed, yet at a low frequency 
 
 We followed survival and growth patterns of the human colon cancer cell 

line HCT116 after high-dose doxorubicin treatment.  Genome chaos can be 

effectively induced under such treatment conditions (Liu, Stevens et al. 2014).  

This in vitro “watching evolution-in-action” experiment was designed to observe 

any potential transition between initial treatment-induced cell death and long-term 

growth after recovery (Figure 2).  This approach holds an unique advantage over 

current in vivo models by providing a window of observation of cell populations 

over the entire treatment and recovery process and allows for precise extraction 

of cells for genetic/phenotypic analyses, whereas only end products (which may 
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Figure 2: Schematic diagram of experimental design. 
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not be directly informative of the entire process) are extracted from many current 

in vivo models for analysis.  Despite anticipated findings of high-dose treatment 

resulting in initial lower cell counts compared with low-dose and untreated control 

groups (eliminating ~90% of identified and traced single cells over seven days 

after treatment), a striking transition was observed.  This was evidenced by 

recovered, high-dose treated cells outgrowing untreated cells after 31 days in 

culture (~18% higher tumor cell population total) (Figure 3).  However, such 

exciting findings were difficult to replicate in order to demonstrate statistical 

significance.  We failed to observe this transition between initial effective cell 

death and aggressive growth in two separate repeated trials.  This raised the 

question: should we consider the observed transition a “false result” and 

disregard it?  Despite its low frequency (1 in 3 attempts), it does fit the reality of 

cancer drug resistance.  Equally important, the same level of uncertainty has 

been observed from time to time (Table 2), and it is well known that different 

patients display drastically different responses to treatments in terms of the onset 

of drug resistance.  We realized that if the transition is real, the chance of 

inducing aggressive outlier formation, which could then dominate surviving cell 

population growth, must be very low.  This low reproducibility might explain why 

such an important transition has been previously ignored.  Taking this into 

consideration, we realized that we needed to illustrate: 1) regardless of whether 

treated outliers overgrow untreated control groups after recovery, the overall 

heterogeneity for all high dose groups should be increased following treatment 
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Figure 3: Recovered HCT116 cells display higher cell growth after high-
dose treatment and long-term culture.  Total HCT116 cell counts after 
doxorubicin treatment for 16 hours (0, 50, 100nmol/L) and recovery in long-term 
culture.   
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Table 2.  Genome alteration observed across therapeutic approaches and 
cancer models. 
 
Examples References 
Traditional drug resistant cell line selection 
Cells in vitro were treated with a panel of 
general chemotherapeutics (representing 
different mechanisms) of gradually increasing 
concentrations until resistant clones were 
selected.  Resistant clones displayed altered 
karyotypes compared to cells prior to 
treatment. 

 
Current study, Heng et al., 
unpublished observations 

Cancer specific targeting 
Cells in vitro were treated with a small 
molecule inhibitor targeting cell death 
pathways.  Clones that survived treatment 
displayed altered karyotypes. 

 
Heng et al., unpublished 
observations 

Genome chaos induction 
Genome chaos has been observed in vitro 
following various chemotherapeutics and linked 
to many diverse molecular phenomena and 
mechanisms. 

 
Heng 2007; Duesberg 2007; 
Stevens, Liu et al. 2014; Liu, 
Stevens et al. 2014, Heng 
2015; Current study 

Patient sample sequencing following 
treatment 
Sequencing of matched pre- and post-
treatment patient tumor cell samples revealed 
different genetic landscapes, including at the 
karyotype level. 

 
Johnson, Mazor et al. 2014; 
Patch, Christie et al. 2015 

Budding yeast variation following treatment 
Induced aneuploidy populations display 
increased phenotypic variation with increased 
treatment intensity, resulting in resistance. 

 
Chen, Mulla et al. 2015 
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and recovery; 2) aggressive outliers that are products of genome chaos (of 

these, some will display fast growth) will emerge at low frequencies, and to 

demonstrate this transition, the likelihood must be examined quantitatively.  

Furthermore, since the process of genome-mediated drug resistance appears to 

be a stochastic process, a large number of duplicates are needed to test this 

hypothesis. 

The real and rare event of successful, aggressive outlier formation was 
identified through quantitative analysis and requires drug treatment 
induced heterogeneity as a precondition 
 
 To quantitatively monitor population dynamics after treatment recovery, 

we systematically analyzed total cell growth of six separate, parallel trials, each 

consisting of ten treated samples and four untreated controls (Figure 4) 

(Appendix A).  Since the same aggressive treatment conditions were used for all 

treated groups (previously established, clinically-relevant conditions for inducing 

genome chaos) (Liu, Stevens et al. 2014), initial high levels of cell death were 

observed across all 60 treated samples. 

 After recovery, the average growth of treated cells was lower than controls 

across all trials (Figure 4A), supporting the commonly accepted viewpoint that 

high-dose drug treatment slows down overall population recovery.  We then 

examined whether growth heterogeneity was impacted as a result of treatment, 

and we observed a higher coefficient of variation in the treated samples 

compared to controls in all trials (Figure 4B).  In other words, despite reduced 

numbers of survivors, the evolutionary potential of these treated populations is 
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Figure 4.  High-dose doxorubicin treatment results in decreased average 
cell population sizes, increased population growth heterogeneity and 
induced formation of aggressive outliers.  (A) Total HCT116 cell counts 
post-treatment/recovery after seven days of growth.  Each trial (of six) consists of 
treated samples (1T-6T) and untreated controls (1C-6C).  Error bars represent 
S.D.  (B) Coefficient of variation of treated samples and untreated controls.  (C) 
Boxplots of total HCT116 cell counts of treated samples and untreated controls.  
Aggressive outliers (values greater than 1.5 times the interquartile range above 
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the third quartile and greater than corresponding control values) are labeled as 
solid black circles.  Other outliers are labeled as empty circles.  (D) Cell counts of 
individual samples (S1-S10) and untreated controls (C1-C4) from Trial 1 after 
seven days of growth.  C1-C4 average (CA) and S1-S10 average (SA) are 
represented.  Error bars represent S.D. 
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higher, as the degree of heterogeneity directly contributes to cancer evolution 

(Horne, Ye et al. 2015).  It is important to note that higher variance does not 

necessarily translate to rapid resistance, as potential differs from reality.  Most 

importantly, we confirmed the low probability event by identifying three 

aggressive outliers in Trials 1 and 3 that displayed higher growth than 

corresponding control samples (Figure 4C).  In contrast, all control samples 

displayed lower variation for each trial than treated groups, as demonstrated by 

coefficient of variation calculations.  As illustrated in Figure 4D, for one of the 

trials that displayed two aggressively growing samples, the remainder of treated 

samples much slower growth.  In contrast, variation among control samples was 

low.  This multiple, parallel trial (representing separate runs of evolution) analysis 

confirms the presence of a key transition in aggressive treatment resistance, as 

aggressive outlier formation is a rare but real event. 

 To validate these findings, we performed three additional trials with 

administration of a decreased concentration of doxorubicin by tenfold and 

compared these results with those of untreated and high-dose doxorubicin 

treated trials (Figure 5) (Appendix B).  Significant differences were observed 

between the high-dose and untreated control groups in terms of average total cell 

counts and coefficients of variation (p < 0.0004) that were not observed between 

the untreated control and low-dose groups.  This supports that increased growth 

heterogeneity (i.e. evolutionary potential) is the direct result of high-dose 

treatment. 
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Figure 5.  Low-dose doxorubicin treatment does not result in the 
significantly increased population growth heterogeneity observed after 
high-dose doxorubicin treatment.  (A) Average total HCT116 cell counts 
post-treatment/recovery after seven days of growth for untreated controls (C), 
low-dose doxorubicin treated samples (LD), and high-dose doxorubicin treated 
samples (HD) of all trials.  Error bars represent S.D.  ***, P < 0.0004 (C vs. HD) 
(B) Average coefficient of variation of untreated controls (C), low-dose 
doxorubicin treated samples (LD), and high-dose doxorubicin treated samples 
(HD) of all trials.  Error bars represent S.D.  ***, P < 0.0004 (C vs. HD). 
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Additional factors that can increase the odds of induced drug resistance 
following initial treatment – further validation 
 
 In addition to initial dosage, what other factors can contribute to outlier 

success?  According to the outlier behavior within a cell population, if the drug 

induced transition is a rare event driven by outliers, cell counts prior to drug 

treatment should be important, as more cells should generate more outliers.  If 

this is true, it also validates our explanation.  We performed additional trials using 

flasks of higher HCT116 cell confluence to maximize the opportunity of 

aggressive subgroup emergence (increasing the pre-treatment cell count per 

sample nearly 600-fold, from 5,000 to approximately 3,000,000 cells).  

Aggressive subgroups were consistently observed with these higher cell counts 

following drug treatment.  While this transition is the result of minority events, a 

logical extension of these results to the many millions of tumor cells found in 

patients would suggest that this transition event is more of a certainty rather than 

an unlikely occurrence judged by a limited number of repeated experiments.  It is 

worth noting that among many induced features that are essential for drug 

resistance, only a small portion of the surviving cell population displayed fast 

growth.  Because we have only monitored the growth rates, important outliers are 

clearly underestimated.  If multiple features are simultaneously monitored, more 

outliers should be identified.  This fits into the clinical situation where resistance 

is the general rule rather than the exception, as somatic cell evolutionary 

selection acts on many different features with highly dynamic population 

replacement.  Taking this added complexity into account, it is very likely that the 
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occurrence of successful outliers in the clinic is much higher, explaining why drug 

resistance is so common in the clinic. 

 Second, to demonstrate the contribution made by aggressive outliers to 

rapid drug resistance, in a separate trial, we performed single-cell derived 

population analysis of a recovered aggressive outlier population and compared to 

untreated controls (Figure 6) (Appendix C).  Recovered subgroups on average 

displayed moderately, but not significantly, faster single-cell derived population 

growth than control subgroups (p=0.0985), and aggressive subgroups were also 

shown to be faster than all control subgroups (Figure 7A).  This supports the 

concept that aggressive outlier populations that are the products of this process 

can dominate recovered populations and drive resistance through rapid 

proliferation.   

Third, to confirm the role of genome alteration in this transition, we 

performed multi-color chromosome painting analysis to observe outlier 

karyotypes, and we confirmed that surviving treated cells displayed different 

genomes compared with untreated cell populations (Figure 7B).  HCT116 serves 

as an excellent model analysis, as this cell line has remarkable documented 

karyotypic stability (Thompson, Compton et al. 2008; Knutsen, Padilla-Nash et al. 

2010; Abdallah, Horne et al. 2013).  Since all resistant clones display different 

karyotypes compared to the original karyotype of untreated populations, and it is 

well-characterized that genome chaos represents a necessary process to 

generate new, genome-defined systems (Liu, Stevens et al. 2014).  It is worth 
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    Day 1          Day 3            Day 5 

 

Figure 6. Single-cell derived population growth analysis. Cells were plated in 
T-25 flasks labeled with grids at a concentration of 400 cells/flask.  On Day 1, 
twenty single cells per flask were identified and recorded.  Growth was monitored 
under light microscopy and recorded daily. 
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Figure 7: High-dose doxorubicin treatment results in increased single-cell 
derived population growth and karyotypic alteration. (A) In situ single cell 
growth of HCT116 cells post-doxorubicin treatment/recovery. Single cells (20 per 
sample) are identified and monitored daily for five days. Cell totals were 
calculated after five days of growth. (B) Multi-color chromosome painting 
karyotype image of recovered high-dose doxorubicin-treated HCT116 cell. Novel 
clonal translocations indicated by arrows. Although genome chaos is the 
mechanism that produces altered genomes, highly chaotic genomes are often 
not detectable in later stages. 
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pointing out that clones that finally emerge from this process often display much 

simpler alterations, possibly due to the fact that too many drastic genome 

changes result in cells that are either non-viable or viable.  Despite that chaotic 

genomes are necessary for genome evolution, more stable genomes are 

selected from chaotic genome evolution.  This combined approach (growth 

pattern analysis and karyotype analysis) demonstrates that these outliers do not 

exist within the cell population prior to treatment.  It is important to point out that 

there are different strategies to profile emergent and original populations.  One 

such approach is through DNA sequencing; however, another more effective way 

is through karyotyping, as the gene defines a feature of the system, while the 

karyotype defines the overall system itself.  It is known that the karyotype codes 

for system inheritance while the gene codes for parts inheritance (Heng, Stevens 

et al. 2011). 

Discussion 

An identified, general macro-cellular evolutionary model of high-dose 
drug-induced cancer drug resistance 
 
 A number of conclusions can be reached from our analysis.  These 

findings reveal a key transition in cancer drug resistance, which is summarized 

and illustrated with the following model (Figure 8): 1) high-dose therapeutics can 

sharply reduce tumor cell counts; however, these also induce increased genome 

chaos as a trade-off; 2) genome heterogeneity and evolutionary potential are 

increased through stochastic, rapid fragmentation and reorganization of chaotic 

genomes, followed by selection of stable, altered genomes.  This treatment- 
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Figure 8: Diagram depicting the impact of high-dose treatment stress-
induced chromosomal instability in the context of genome-mediated cancer 
evolution. Different chromosomes of the genome are designated by color (blue, 
yellow, red). Regardless of the targeted mechanism, high-dose drug-related 
stress to the genome results in rapid, stochastic genome fragmentation and 
genome topology reorganization. The consequences of this process are 
increased karyotypic heterogeneity and evolutionary potential, as shown by 
numerical aberrations (e.g. aneuploidy) and/or structural aberrations (e.g. 
translocations). Treatment-induced heterogeneity serves as a necessary 
precondition for selection. Stable karyotypes that survive this process are 
selected for clonal expansion, and aggressive subgroups will dominate tumor 
growth through rapid tumor cell repopulation. 
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induced increase of heterogeneity serves as the necessary pre-condition for the 

emergence of a small fraction of aggressive subgroups or outliers that dominate 

rapid tumor cell population growth after recovery; 3) these subgroups can then 

drive cancer progression through rapid generation of cancer cell populations, 

swiftly recovering lost tumor cell numbers initially eliminated by treatment 

(Abdallah, Horne et al. 2013). 

 To demonstrate that this model is also applicable to many other systems, 

a variety of cancers in vivo and in vitro were treated with various approaches, 

spanning different targeting strategies (Table 2).  Pre-treatment and post-

recovery tumor cells were analyzed by spectral karyotyping.  In all cases, 

resistant clones displayed obvious genome change, demonstrating the 

emergence of new systems following drug treatment.  We thus can conclude,  

without following all known therapeutic agents and approaches, that the end 

result of aggressive therapy will be similar; surviving cells will present altered 

genomes as the products of this general phenomenon.  Interestingly, similar 

observations were recently reported in budding yeast, where the heterogeneity of 

aneuploidy cell populations increased with stress, causing resistance to emerge 

(Chen, Mulla et al. 2015).  This macro-evolutionary model represents a general 

model of drug resistance in cancer, where induced genome chaos (not selection 

of pre-existing variants) is mainly responsible.  It is now clear that induction of 

this drastic process is dependent on the degree of the treatment administered 

rather than the specific molecular mechanism that is targeted (Liu, Stevens et al. 
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2014), as specific targeting also leads to rapid drug resistance through this same 

genome-mediated mechanism.  This may provide reasoning as to why long-term 

success stories from cancer specific therapeutic targeting are exceptional cases 

(Horne, Stevens et al. 2013). 

 Despite the low probability of generating outliers with aggressive growth 

(and presumably additional features), cancer prevails through strength in 

numbers (very high tumor cell counts in patients greatly increase the likelihood of 

this event occurring with each treatment administration).  This represents an 

excellent example of how the law of truly large numbers combined with 

evolutionary selection power can always favor these unlikely events (Limbrick- 

Oldfield 2014).  It is interesting to point out that, despite one-in-a-million events 

happening all the time, molecular biologists often choose to ignore infrequent 

events in their experimental design.  The strategy of using averaging profiling 

and eliminating outliers (as these are commonly regarded as noise) has misled 

the field of cancer drug resistance.  According to current standards of molecular 

characterization, 1 in 20 samples should be ignored.  However, in clinical reality, 

a one-in-a-thousand event will likely be responsible for rapid drug resistance.  

Cancer research, therefore, must focus on the reality of large numbers of cancer 

cells, which make drug resistance a certainty despite the low probability of 

inducing successful outlier formation. 

This transition encompasses the variety of known molecular mechanisms 
of drug resistance in cancer 
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 Genome alteration reconciles the large number of diverse molecular 

mechanisms of drug resistance, most of these falling under the categories of 

genetic heterogeneity and pharmacokinetics (Heng 2015).  Individual molecular 

mechanisms (e.g. specific mutations, pathway alterations, active multi-drug 

pumps) work for some subpopulations, such as those under physiological 

conditions, within micro-evolutionary phases, and especially in response to low-

dose regimens, as reflected by average population behavior.  However, when the 

tumor cell population is under crisis, such as during periods of aggressive 

therapy administration, only drastic genome reorganization can rapidly offer 

opportunity for survival.  Thus, the game changes from fine-tuning existing 

systems by gene/epigene modifications to the formation of new survivable 

systems through genome reorganization, which explains why the vast majority of 

surviving tumor cells display altered genome-defined systems (Heng 2009; Heng, 

Stevens et al. 2011; Heng 2015; Stepanenko, Andreieva et al. 2015). 

Using genome replacement to unify the molecular mechanisms of drug 

resistance also fits under the evolutionary mechanism of cancer (Heng, Stevens 

et al. 2010).  Increased evidence supports this new framework.  Recent glioma 

and ovarian cancer sequencing studies revealed different genetic landscapes, 

including karyotype-level change, of patient tumor cells prior to and after 

treatment (Johnson, Mazor et al. 2014; Patch, Christie et al. 2015).  More 

importantly, massive genome alteration represents a major characteristic of the 

vast majority of cancer genomes following drug treatment, and genome 
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reorganization can overpower or change the context of gene mutations.  Even 

though drug resistance in cancer is a dynamic process that occurs at multiple 

genetic levels, genome-mediated macro-cellular cancer evolution is the key 

(Heng, Stevens et al. 2006; Heng, Liu et al. 2010; Heng, Stevens et al. 2010; 

Heng, Stevens et al. 2011; Heng, Bremer et al. 2013).  Initially observed by 

cytogenetic analyses, the concept of genome chaos during punctuated cancer 

evolution has been confirmed by large-scale cancer genome sequencing 

(Meyerson and Pellman 2011; Navin, Kendall et al. 2011; Stephens, Greenman 

et al. 2011; Holland and Cleveland 2012; Baca, Prandi et al. 2013; Wang, Waters 

et al. 2014). 

Implications for cancer drug resistance research 

 Our results call upon new methodologies to study drug resistance based 

on this entire process (high initial cell death, genome reorganization, increased 

heterogeneity and outlier-driven progression) rather than initial treatment impact 

only.  In addition, measuring genomic heterogeneity and stability status of the 

disease may provide pertinent information regarding potential treatment and 

appropriate treatment dosage.  Current analytical methods neglect the 

contributions of outliers and overall heterogeneity to disease progression 

(Abdallah, Horne et al. 2013), so emphasis must be placed on applying single-

cell resolution techniques to achieve a comprehensive understanding of disease 

stability and progression before and during treatment regimens.  Further, this 

transition could be further understood with application of the multiple level 
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adaptive landscape model, as this directly illustrates the relationship between 

genome change (macro-evolution) and gene/epigene changes (micro-evolution) 

(Heng, Liu et al. 2011; Heng, Bremer et al. 2013; Huang 2013). 

Implications in therapeutic regimen research, development and 
administration 
 
 This new understanding thus warrants strong consideration in the majority 

of therapeutic regimen research and development efforts.  The clinical message 

from these studies is to avoid triggering genome chaos during intervention, 

because this phenomenon ultimately contributes to rapid recurrence and 

resistance.  However, the current goal of improving clinical approaches is 

considered accomplished through the conception and application of drugs with 

increased initial response when compared to the standard line of care.  Despite 

any improvement of initial efficacy, this study suggests that application of 

increasingly aggressive approaches will continue to trigger genome chaos and 

generate genomically and phenotypically different clones that will drive cancer 

progression. 

 Lowering initial numbers prior to treatment administration (i.e. through 

surgical removal of tumors) should safely limit induced outlier formation and 

resistance, as these studies have shown that this mechanism occurs at a low 

frequency.  In ovarian cancer for example, studies show an association between 

survival and amount of postoperative residual disease (National Collaborating 

Centre for Cancer (UK) 2011).  This new mechanism would suggest that 

successfully primary surgical removal of tumors, resulting in drastic reduction of 
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the tumor cell population, minimizes the odds of inducing aggressive outlier-

driven recurrence when treatment is administered after surgery.  Rather than 

developing more potent agents, efforts should continue to be placed on 

improving surgical techniques and early detection methods, as effective surgery 

clearly serves as the ideal measure for achieving long-term patient survival. 

 Finally, drug-induced genome chaos can provide explanation behind the 

early successes of alternative treatment strategies that do not incorporate the 

administration of maximum tolerated doses.  These include adaptive therapy, 

where the goal is to maintain a stable tumor burden by adjusting treatments and 

dose concentrations in response to tumor cell growth/death (Gatenby, Silva et al. 

2009; Gillies, Verduzco et al. 2012; Silva, Kam et al. 2012).  Metronomic therapy 

aims to maximize tumor cell death, but this strategy involves a rhythmic regimen 

consisting of more frequent treatments than the maximum tolerated dose 

strategy, but of lower concentrations (Kerbel and Kamen 2004).  These two 

approaches perhaps fulfill the new clinical directions we proposed, as both apply 

constraint to the tumor cell population with lower dose therapeutics and prolong 

overall survival.  As our early results suggested (Heng et al. unpublished 

observations), lower concentrations of therapeutics may reduce both the onset of 

genome chaos and formation of aggressive outliers; however, this needs to be 

further explored.  If this is the case, cancer maintenance through cancer genome 

constraint and overall tumor cell population management rather than maximizing 
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tumor cell death counts would offer greater long-term benefit and significantly 

extend patient life span. 
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CHAPTER 3: SEARCHING FOR A CONCEPTUAL FRAMEWORK TO STUDY 
THE PATTERN OF CANCER EVOLUTION THAT ACCOUNTS FOR 
HETEROGENEITY AND OUTLIER CONTRIBUTIONS 
 
Introduction 

 In Chapter 2, a drug-induced transition was identified that illustrates a key 

clinical paradox between initial effective tumor cell killing with high-dose 

therapeutics and robust, long-term cancer drug resistance.  This transition, 

representing a general mechanism of cancer drug resistance, comprised of 1) 

induced genome chaos (rapid genome fragmentation and reorganization); 2) 

increased genome heterogeneity, the necessary pre-condition for the formation 

of aggressive outliers; and 3) aggressive outlier-driven progression, represented 

by the emergence of new features such as rapid proliferation.  This transition was 

identified through experimentation and analyses designed to monitor long-term 

system behavior and account for both heterogeneity (i.e. genome, cell growth) 

and outlier contributions rather than focusing on specific patterns and initial killing 

impact.   

 Cancer heterogeneity at multiple levels (e.g. genetic, metabolic, growth) is 

an often-recognized phenomenon in cancer research, yet it is frequently 

disregarded in studies in terms of experimental design, data collection/validation 

and in the synthesis of findings and conclusions.  The strategy implemented by 

many researchers is to identify the signal within the noise using a wide variety of 

molecular techniques in order to identify key molecular mechanisms or pathways 

primarily responsible for cancer processes, key stages in progression and/or 
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features.  This has been accomplished over the past few decades using average-

based techniques to gather profiles of sampled tumor cell populations.  Indeed, 

such strategy has been further supported by current statistical analyses that 

eliminate most outliers.  Such approaches have also promoted the clonal 

evolutionary concept, which explains some exceptional cases such as the 

chronic phase of chronic myeloid leukemia (Horne, Stevens et al. 2013).  

However, clonal expansion-driven cancer evolution has been difficult to 

document in the majority of cancer cases. 

By identifying the switching between the stepwise Darwinian phase (where 

somatic clonal expansion can be frequently observed) and stochastic punctuated 

cancer evolution (Heng, Stevens et al. 2006), this issue could have been solved.  

However, the majority of researchers were not convinced.  Perhaps due to their 

excitement to find the long-expected pattern within the noise, they had hoped to 

identify the key genetic signature of cancer through the cancer genome 

sequencing project involving large numbers of clinical samples (Heng 2015).  

Disappointingly, the results of the current cancer genome sequencing project 

have only revealed increased heterogeneity at multiple genetic levels (Horne, Ye 

et al. 2015a; Heng 2015).  Clearly, some basic concepts as they apply to cancer 

need to be re-investigated. 

 Recent work has demonstrated that the statistical mean may be ill-suited 

for profiling many pathological conditions, including cancer, with elevated 

genome heterogeneity (Abdallah, Horne et al. 2013).  During the macro-cellular 
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evolutionary phase of cancer for example, the average cancer cell is non-

existent, as system heterogeneity is dominant.  Use of average-based analyses 

in this phase is incorrect, as averages eliminate diversity.  This explains the data 

from the cancer genome sequencing project well, where many studies have 

failed to identify consistent drivers.  In addition, when tracing cancer evolution, 

the patterns that are revealed are highly dynamic and punctuated, even at the 

DNA sequence level at single-cell resolution (Navin, Kendall et al. 2011; Wang, 

Waters et al. 2014; Sottoriva, Kang et al. 2015).  As a result, a “big bang” model 

was recently introduced to account for the bursts of high intratumoral 

heterogeneity observed, and tumor progression has been described as 

“punctuated clonal expansions with few persistent intermediates” (Navin, Kendall 

et al. 2011; Sottoriva, Kang et al. 2015). 

 When cancer enters the micro-evolutionary phase; however, statistical 

averages may faithfully be employed, as system heterogeneity is lower, with the 

majority of change occurring at lower genetic levels (e.g. gene, epigene).  This 

can explain why average-based approaches can accurately apply towards 

specific stages of linear models.  This could also explain the punctuated phases 

and limited clonal expansions observed from sample to sample, as the two 

phases of cancer evolution progress in NCCA/CCA cycles (Heng, Stevens et al. 

2006; Heng 2015). 

Thus, the findings and approaches from the previous chapter raise 

questions regarding how to appropriately account for heterogeneity and outliers 
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in cancer research as well as determining which type(s) of statistical strategies 

should be applied, as knowing the practical value of these outliers is highly 

significant.  More importantly, the approach we took in collecting and 

synthesizing data led to a crucial realization: a unique appreciation for outliers in 

cancer research is essential, and a new research framework/methodology is 

urgently needed to correctly study a system where heterogeneity is dominant.  

We thus utilize these valuable data to study scientific methodology in cancer. 

Specifically, we comparatively analyzed the results of the same sets of 

experiments with two different frameworks of thinking to investigate the 

potentially significantly different conclusions.  The first involves traditional 

thinking that eliminates outliers when their frequencies are low.  The second is a 

holistic approach with the aim to monitor overall system behavior, where 

aggressive outliers represent essential drivers under high levels of macro-

evolutionary selection despite their low likelihood of success.  Through this 

theoretical synthesis, it is clear that application of different concepts and 

strategies leads to drastically different conclusions. 

Different Analytical Approaches Lead to Drastically Different Conclusions 
 
 According to the strategy geared towards eliminating “noise,” when one 

out of three trials represents a positive result, such result should be ignored if it 

can be justified significantly, as it represents the minority.  Similarly, the positive 

results from one out of twenty trials would surely be disregarded in analysis.  

However, as we presented in Chapter 2, the average treated cell totals post-
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recovery were consistently lower than untreated controls in all six trials (Figure 

4).  This approach falls short in making the connection between initial cell death 

from aggressive treatment and robust, rapid long-term cancer drug resistance, as 

it cannot illustrate this transition in the first place.  By disregarding the outliers in 

this study, we cannot justify the clinical reality that drug-induced resistant clones 

rapidly emerge, despite being successfully generated at extremely low 

frequencies.  This represents a generally accepted approach in many molecular 

genetic studies.  Statistical tools are utilized to analyze averaged patterns, and in 

doing so, the contributions of outliers to data sets are effectively reduced or 

eliminated.    

 In contrast, by accounting for and placing value on all data, even those at 

frequencies of 1/3 or 1/20, we were able to identify aggressive outliers and 

associate their contribution to overall tumor population growth and robust drug 

resistance.  After performing three experiments observing the effects of long-term 

growth after different doses of doxorubicin, we observed faster cell growth in the 

high-dose group compared to untreated controls (Figure 3).  In the other two 

experiments, we observed higher cell growth in the untreated control groups.  As 

this experiment did not yield consistent results for these three trials, conventional 

thinking would dismiss these experiments without a conclusion.  Further, these 

experiments fail to faithfully link to the clinical situation that robust drug 

resistance is clinical reality. 
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 With the elimination of noise in analysis also comes the disregard for 

overall sample heterogeneity.  In contrast, when we calculated coefficients of 

variation to illustrate overall cell total heterogeneity, we realized that the 

evolutionary potential of the treated samples was consistently elevated for all 

trials compared to untreated controls (Figure 4). 

 In contrast to identifying consistent explanations and average-based 

conclusions, we applied an evolutionary approach by focusing on evolutionary 

potential that reflects on both overall heterogeneity and outliers, despite their 

lower odds for success.  In addition to consistently lower cell total averages of 

treated samples after treatment and recovery, we observed higher coefficients of 

variation across all trials.  This was anticipated considering the stability of the 

untreated cell line we used in experimentation combined with the stochastic 

nature of drug-induced genome chaos, as this process generates different 

genome products each time.  Taking stochasticity into account, we realized that 

while heterogeneity (i.e. genome and growth) was increased and induced by the 

administered treatment, it was only a precondition that could lead to robust drug 

resistance, especially considering the low numbers of cells we analyzed in 

culture compared to the many millions and billions of tumor cells that may be 

affecting patients upon treatment.  We made this realization after observing the 

infrequent event of emergent aggressive outliers in two of the six trials (at an 

overall sample frequency of 1 in 20) that outgrew all corresponding control 

samples.  Despite its low frequency, this event becomes a certainty when tumor 
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cell populations (such as those observed in metastatic cancer patients) are very 

large.  Though this perspective, we were able to identify a general transition 

providing explanation for robust drug resistance and answer a key clinical 

paradoxical question that we were able to using average-based methods alone, 

as lower average cell totals could not extend to rapid, robust cancer drug 

resistance.  This was accomplished with the detection of drug-induced, increased 

heterogeneity at multiple levels and the realization of the contribution of 

generated aggressive outliers to the overall tumor cell population post-recovery. 

 It is worth noting that disregarding heterogeneity and outliers in average-

based analyses may reduce the need for increased sample/cell population sizes 

in experimental study, as associations/findings with statistical significance may 

be accomplished with a smaller sample size.  If the frequencies of outliers are 

fixed, and all outliers would be eliminated by these approaches regardless, there 

would be no need to increase the sample size and number of trials.  In Chapter 

2, the majority of cells were initially eliminated from treatment in our study, and 

those that emerged would be ignored (and their contributions to overall tumor cell 

population progression after recovery would be underestimated) depending on 

the type of analysis (i.e. average-based analyses). 

However, if emphasis is shifted towards capturing outliers, then expansion 

of sample sizes/trial numbers is essential, as expansion would reveal the overall 

range of data.  In Chapter 2, this resulted in increased numbers of recovered 
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populations, increasing confidence of overall findings (consistently lower cell total 

average, yet emergent aggressive outliers). 

 In Chapter 2, we expanded experimentation to six total trials and the 

number of total samples to 60 to systematically observe this process.  After 

treatment and recovery, we observed lower averages across treated samples in 

all trials compared with controls.  Outlier treated samples were also detected that 

outgrew corresponding control groups, and this finding was key, as these 

identified outliers would be responsible for driving overall tumor population 

growth through increased rates of proliferation.  At these low frequencies (1/20-1-

60); however, these data could be ignored in the synthesis of conclusions, 

especially if the focus of the study is on the average-based findings.  Average-

based analysis would suggest that doxorubicin treatment is effective at slowing 

tumor cell growth after recovery compared to untreated tumor cell growth, and 

this could serve as part of the conclusion to the study.  However, it is very 

important to note that this conclusion, where treatment is effective at slowing 

tumor cell population growth on average after recovery, does not provide 

explanation for the clinical problem of robust drug resistance, nor does it provide 

any direction or implication to solving this real clinical problem. 

Outliers represent critical non-clonal chromosome aberrations and are the 

seeds for clonal chromosome aberrations later in cancer progression (Heng 

2015).  During genome chaos, each survivable NCCA continues to evolve.  This 

chain of outliers, although undetectable by sequencing and averaging 
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heterogeneous populations, cannot be ignored.  However, detection of outliers 

becomes obvious by examining karyotypic profiles at single-cell resolution, for 

example.  Conventional thinking may suggest that outliers may be attributed to 

technical error; however, previous work has demonstrated that heterogeneity of a 

model system (e.g. growth rates of cell lines in continuous, long-term culture) or 

species can be inherited and maintained over generations (Abdallah, Horne et al. 

submitted).  This recently introduced concept termed “fuzzy inheritance” 

suggests that these outliers are real, and given the roles these outliers play in a 

population in terms of progression and during times of crisis such as high-dose 

chemotherapeutic treatment and recovery, it is critical that these outliers be 

accounted for in cancer research analyses. 

Defining key parameters for studying heterogeneous populations under 
stress 
 

From this analysis, we have determined that there are three criteria that 

directly impact cell population heterogeneity-mediated drug resistance, and these 

should be considered when accounting for heterogeneity defined cancer 

evolutionary potential.  The first is the internal stability of the cells within the 

population, which can be measured as single-cell resolution heterogeneity at 

various levels (e.g. karyotype, sequence, epigenetic).  The second criterion is the 

environmental factors that can serve as stress to the population.  We have 

previously discussed how environmental stress can induce increased population 

dynamics at multiple levels (Stevens, Abdallah et al. 2011; Stevens, Liu et al. 

2014; Liu, Stevens et al. 2014; Horne, Chowdhury et al. 2014; Horne, Pollick et 
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al. 2015; Heng, Horne et al. 2016).  Various stresses at high levels (e.g. 

chemotherapeutics, changes in culture conditions) have been associated with 

inducing chromosome fragmentation and genome chaos (Stevens, Liu et al. 

2007; Stevens, Liu et al. 2014; Liu, Stevens et al. 2014).  Finally, the third 

criterion is cell population size.  As this study has shown, infrequent, drastic shifts 

in dynamics, such as high-dose treatment induced genome chaos and outlier-

driven population growth, can be more readily observed in initially treated cells 

within larger population sizes.   

Implications for Experimental Design and Data Presentation 

This analysis offers implications for experimental design and data 

presentation.  In order to appropriately capture any minority events that could 

impact population dynamics and long-term survival consequences, numbers of 

experimental trials should be increased.  Considering current limited resources 

available (e.g. research funding, materials, patient samples, etc.), experimental 

efficiency has become important.  This added pressure encourages performing 

the absolute minimum number of experimental trials necessary to achieve 

significant findings, which may be accomplished with just a few experimental 

trials.  However, when dealing with highly dynamic, heterogeneous conditions 

and models, expansion of experimental trials and samples is necessary to 

determine the overall range of potential outcomes. 

In the shift to using a holistic approach to monitor system behavior, all 

data points must be incorporated.  This includes a needed shift away from using 
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methods that involve outlier removal in the pursuit of achieving statistical 

significance.  In contrast, we cannot disregard the majority of data in order to fit a 

convenient story.  This is the case for a landmark Rous sarcoma virus cell 

transformation study, where 80-90% of cells infected did not transform.  

However, the minority of cells that did transform was presented as the rule and 

not the exception.  All data should be presented rather than selecting for 

exceptions and passing them as the general rule, even if this means that the 

overall message will become far more complicated. 

 In addition to experimental trial counts, trial durations must be extended 

to encapsulate entire biological processes.  Using cancer drug treatment and 

resistance studies as an example, studies of potential new agents/therapeutic 

approaches are typically concluded after the initial impact (e.g. cell death counts 

or tumor shrinkage) is determined.  For identifying molecular explanations of drug 

resistance, the window of observation is focused on tumor cells that have already 

undergone rounds of treatments and completed multiple NCCA/CCA cycles, and 

therapeutic resistance at the molecular level is determined based on end product 

analysis.  However, information from both of these approaches (initial treatment 

impact and end product analysis) does not shed light on the overall process of 

the formation and emergence of resistant populations.  Initial treatment impact 

does not directly translate to reduced mortality (Pepper 2011), and cancer drug 

resistance remains a real clinical problem despite continued efforts to increase 

maximum initial cell death counts.  Specific molecular targeting approaches 
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derived from end product analyses also result in long-term drug resistance, so 

seeking out dominant pathways or highly expressed genes from resistant cells 

may not be the solution. 

Research Focus Must be Shifted to Single Cell Level Resolution 

We must also prioritize biological research down to the single cell level, 

and this prioritization has been emphasized recently with increased pressure 

from the National Institutes of Health with the introduction of the NIH Single Cell 

Analysis Program (https://www.nih.gov/news-events/news-releases/nih-common-

fund-announces-awards-single-cell-analysis).  Considering the vast 

heterogeneity observed by our group and others at the single cell level, we can 

no longer skew our understandings by averaging these population data.  In 

cytogenetics, this extends beyond recording clonal chromosomal aberrations, but 

accounting for and analyzing non-clonal chromosomal aberrations.  This will 

provide the total profile of the population in terms of dynamics and stability 

(Heng, Stevens et al. 2006; Heng, Regan et al. 2016; Heng, Horne et al. 

submitted).   

Prioritization of Genetic Levels is Necessary for Constructing Accurate 
Understandings of Complex Diseases 
 

In terms of dealing with the abundance of (and often conflicting) genetic 

information available, prioritization of genetic levels will be key to constructing 

understandings of diseases including cancer, and to remedy frustrations and 

unnecessary disagreements between groups that place focus on different levels.  

We have recently addressed this important question and proposed a strategy to 
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measure and account for molecular data at different genetic levels (Heng, Horne 

et al. submitted).  In order to gain an overall system understanding at single cell 

resolution, we prioritized the genome level.  Under genome theory, genome 

topology (sequence and three-dimensional architecture) defines the system 

inheritance or blueprint of an organism, whereas individual genes/epigenes only 

represent “parts inheritance,” as these can be reorganized to form different 

systems (Heng, Stevens et al. 2010; Heng, Liu et al. 2011; Horne, Wexler et al. 

2015; Horne, Ye et al. 2015a; Heng 2015).  However, if the genome level within a 

population is stable (e.g. as evidenced by a homogeneous population 

characterized by clonal chromosomal aberrations), focus could then be shifted to 

lower genetic levels to gain further insight.  However, as we have previously 

discussed, molecular universal understandings that are shared from case to case 

are extraordinarily rare, and will likely be identified in only the most 

homogeneous of disease conditions (e.g. Bcr-Abl fusion gene in chronic myeloid 

leukemia patients in the chronic phase) or physiological conditions (Horne, 

Stevens et al. 2013).  It is also important to note that different pathways are 

involved in different phenotypes, as both redundancy and overlap exist, and this 

especially holds true in cancer (Stevens, Liu et al. 2014; Horne, Pollick et al. 

2015).  To summarize, the overall stability must be measured first to determine 

any potential utility of lower level genetic or average-based data.   

Classification of Biomedical Research Studies Will Aide in Selecting 
Informative Analytical Approaches 
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In addition to prioritizing genetic levels, classification of biomedical research 

studies is necessary in order to determine an effective analytical strategy.  For 

instance, average-based approaches provide data that are most accurate for 

determining patterns within cell populations of high homogeneity, as the signals 

that are easily identified are arguably representative of processes encompassing 

the cell population.   However, with highly heterogeneous populations, where 

drastic variance may exist from cell-to-cell, genes/pathways identified within 

these populations may have conflicting roles, and averaging methods will provide 

misleading results.  Further, outliers play key roles in heterogeneous populations, 

and these contributions will be underestimated or disregarded.   

 The categorization of biomedical research should effectively distinguish 

between systems/events of high and low heterogeneity to indicate to researchers 

whether average-based analytical approaches or accounting for heterogeneity 

and outlier contributions is the appropriate strategy.  For example, average-

based understandings apply well to physiological conditions, where genome 

constraint and homogeneity are high.  This can also be extended to situations of 

low levels of stress, which may require an energy cost by cells to adapt or at 

most low levels of mutations (Horne, Chowdhury et al. 2014; Heng, Horne et al. 

2016).  In these conditions, mutations or minor aberrations are easily detected 

and representative of the patient’s tissues/cells.  In cancer, this strategy may also 

apply to the stepwise, micro-cellular evolutionary phase.  Again, genome 

homogeneity is high in this phase, and any changes that occur during this phase 
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are traceable and readily identified by averaging methods (Heng, Stevens et al. 

2006).  These types of examples could be further examined and illustrated with 

application of the adaptive landscape concept, as these variations are minor, 

shared, and easily detected (Heng 2015). 

 In contrast, pathological conditions can be highly heterogeneous.  The 

search for molecular causative mechanisms of common diseases has resulted in 

the detection of high levels of genome alterations (Horne, Chowdhury et al. 

2014).  Autism and Alzheimer’s disease have been associated with altered 

karyotypes (Ye, Liu et al. 2007; Iourov, Vorsanova et al. 2008).  Aneuploidy has 

been detected in several brain diseases (Iourov, Vorsanova et al. 2012a).  

Comparative genomic hybridization analysis has revealed that 80% of children 

with intellectual disability, autism, epilepsy and congenital abnormalities exhibited 

copy number variants, chromosomal imbalances or meiotic genome instability 

(Iourov, Vorsanova et al. 2012b).  Stochastic genome alterations were observed 

in Gulf War Illness and chronic fatigue syndrome patients (Heng, Liu et al. 2013).  

Celiac and Crohn’s disease patients display significantly increased numbers of 

chromosomal aberrations in peripheral blood lymphocytes (Hojsak, Gagro et al. 

2013).  Increased polyploidy has been observed in cardiomyocytes associated 

with hypertension, congenital heart disease and cardiac overloading (Davoli and 

de Lange 2011).  These conditions differ from single gene or single network-

driven disease, as highly penetrant genetic defects are not detectable within the 

patient population.  For these conditions that display a high degree of diversity, 
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the heterogeneity and outliers should be taken into account under an 

evolutionary framework (Horne, Chowdhury et al. 2014).   

 This strategy also applies to the macro-cellular evolutionary phase of 

cancer, which is characterized by high levels of genome heterogeneity between 

tumor cells and progression is not traceable (Heng, Stevens et al. 2006).  As 

Chapter 2 has demonstrated, accounting for heterogeneity and outliers is a 

useful approach for high stress conditions, such as aggressive chemotherapeutic 

treatment and recovery of tumor cells.  These conditions of high heterogeneity, 

providing opportunity for outlier emergence and success, could be further 

examined and illustrated under the survival landscape concept (Heng 2015). 

Why We Have Trouble Confirming Results Through Experiment Replication 
in Cancer Research (and Beyond) 
 

This synthesis provides insight as to why researchers are having trouble 

repeating experiments and successfully confirming results in cancer research as 

well as other areas of biomedical and biological research.  In cancer, average-

based thinking does not apply to cancer dynamics where system reorganization 

and pathway switching are constantly involved.  Recent work involving the 

reproduction of key ‘landmark’ experiments by scientists in the haematology and 

oncology department at the biotechnology firm Amgen has garnered a lot of 

attention throughout the scientific community, as out of a total of 53 experiments 

performed, the scientific findings were confirmed in only six (11%) (Begley and 

Ellis 2012).  Rather than immediately placing blame on researchers’ techniques 

or making any wild accusations, perhaps the heterogeneity of the models utilized 
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(both intra- and inter-model heterogeneity) and stochasticity could explain these 

failures to reproduce and achieve the original, precise findings.  From what we 

have discussed, increasing the number of experimental trials carried out in each 

study could provide the true range of findings for these experiments, including 

the original data published and those obtained in the reproducibility study.  In 

addition, the approaches we discussed above to properly account for 

heterogeneity should be applied, including observing and collecting data at a 

single cell resolution and accounting for all data points.  The heterogeneity of the 

models should be determined as well, as it is clear that precise, predictable 

results are the products of only the most linear and stable models.  Even 

HCT116 (the human colon cancer cell line studied in Chapter 2) displays a low 

degree of heterogeneity despite documented as a very karyotypically stable 

cancer cell line (Thompson, Compton et al. 2008; Knutsen, Padilla-Nash et al. 

2010; Abdallah, Horne et al. 2013).  Through model profiling, experimental 

trial/sample size expansion, and accounting for variance and outliers in 

heterogeneous models/samples, researchers should have more success in 

validating their findings, as experimentation with heterogeneous models results in 

ranges of outcomes. 
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CHAPTER 4: CONCLUSIONS AND FUTURE DIRECTIONS 
 
Application of genome theory resulted in the identification of a general, 
drug-induced macro-cellular evolutionary mechanism of cancer drug 
resistance 
 
 In this project, we identified a key transition in cancer drug resistance that 

bridges the current clinical paradoxical gap between initially effective drug-

induced cell death and rapid, robust drug resistance.  This transition was 

summarized with the following model: 1) clinically-relevant, high-dose 

therapeutics can sharply reduce tumor cell counts (initially); however, as a trade-

off, this high stress also induces increased genome chaos (reflecting a genome-

mediated survival strategy beyond lower-level adaptation); 2) both overall 

genome heterogeneity and aggressive outlier numbers are increased through 

rapid, stochastic fragmentation and formation of chaotic genomes, followed by 

the selection of stable, altered genomes.  This treatment-induced increase of 

heterogeneity serves as the necessary pre-condition for the emergence of a 

small fraction of aggressive subgroups or outliers that dominate rapid tumor cell 

population growth after recovery; 3) these subgroups can then drive cancer 

progression through rapid generation of cancer cell populations, swiftly 

recovering lost tumor cell numbers initially eliminated by treatment (Abdallah, 

Horne et al. 2013).  The novelty of these findings is the demonstration of the 

impact of drug-induced karyotypic alteration (or macro-cellular evolution) in 

cancer drug resistance, which is the formation and selection of new, outlier 

genetic systems that effectively drive overall tumor cell population growth post-
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treatment and recovery, as evidenced by observed drug-induced karyotypic 

alteration and rapid proliferation.  This represents a general mechanism of 

cancer drug resistance, as genome level alteration has been observed in 

patients, in vitro and in vivo models and the result of various therapeutic 

approaches (Heng, Stevens et al. 2006; Stevens, Liu et al. 2007; Ye, Liu et al. 

2007; Stephens, Greenman et al. 2011; Stevens, Abdallah et al. 2011; Baca, 

Prandi et al. 2013).  In fact, this result has been predicted by the genome theory 

of cancer evolution, which focuses on high stress-mediated macro-cellular 

evolution (Heng 2015). 

Much focus in the field of cancer research has been placed on identifying 

key gene or epigene markers of cancer drug resistance, and genome-level 

alterations have previously been disregarded as artifacts (Heng 2015).  However, 

the presence of chaotic genomes has been recently confirmed in many cancers 

(Heng, Liu et al. 2011; Heng, Stevens et al. 2011; Stephens, Greenman et al. 

2011; Baca, Prandi et al. 2013).  This project thus provides evidence that cancer 

drug resistance is the direct consequence of drug-induced genetic dynamics at 

multiple levels, and alterations at the genome level play a crucial role.  According 

to the evolutionary mechanism of cancer, which is equal to the collection of all 

diverse molecular mechanisms (Ye, Stevens et al. 2009; Heng, Stevens et al. 

2010; Heng, Stevens et al. 2011; Heng, Bremer et al. 2013), each individual 

molecular mechanism can be unified at the genome level, as the genome 

represents a macro-evolutionary selection unit.  Even though an individual 
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molecular mechanism can effectively promote cellular adaptation, it is insufficient 

for the cell to survive under extremely high stress conditions.  The cell needs 

genome change (i.e. new system formation) to save the day. 

Establishment of a conceptual framework to study the pattern of cancer 
evolution that accounts for heterogeneity and outlier contributions 
 
 In Chapter 3, we raised questions regarding how to appropriately account 

for heterogeneity and outliers in cancer research in light of the role these have in 

cancer drug resistance.  This was rather important, as we were able to show that 

application of different analytical approaches (i.e. average-based analyses vs. 

heterogeneity and outlier-focused analysis) led to drastically different 

approaches.  Importantly, the clinical paradoxical gap between high initial cell 

death with high-dose therapy and rapid, robust drug resistance was bridged after 

growth heterogeneity and aggressive outliers were accounted for.   

 We defined key criteria for analyzing heterogeneous populations in 

studies.  These were the following: 1) the internal stability of the cells within a 

population, which can be accomplished through measuring heterogeneity of 

multiple genetic levels at single-cell resolution; 2) environmental factors that 

provide stress to the population, as these influence system dynamics; and 3) cell 

population size, as infrequent, drastic shifts in dynamics can be more readily 

observed in large population sizes (e.g. high-dose treatment induced genome 

chaos and outlier-driven population growth). 

 We extended this synthesis to biomedical studies and offered additional 

approaches to aide in both selecting informative analytical approaches and 
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designing experiments when the issue of heterogeneity is prevalent.  These 

included the expansion of trial numbers and sample sizes to capture any minority 

(yet potentially highly influential) events, shifting research focus down to single-

cell level resolution, prioritizing genetic levels and classifying biomedical research 

studies.  This synthesis also offered explanation behind the failure to confirm 

some results through experiment replication, as experimentation with 

heterogeneous models can result in a range of outcomes. 

Implications of drug-induced genome-mediated cancer drug resistance on 
current large-scale research efforts, treatment administration and cancer 
drug development 
 

Current large-scale efforts including the Moon Shots Program launched in 

2012 have a simple, yet ambitious, aim to “end the threat of cancer” 

(www.cancermoonshots.org).  This bold move will be carried out through the 

acquisition and analysis of massive data sets combined with the development 

and customization of panels of therapeutic agents.  Utilization of impressive 

state-of-the-art technologies, strong collaborations and abundant resources 

aside, the overall mission of these types of programs has not changed since the 

beginning of cancer treatment administration decades ago: cancer must be 

eliminated. 

However, as we have shown, high levels of stress such as those 

associated with aggressive therapeutic regimens induce genome chaos-

mediated cancer evolution, including general or specific-targeting treatment 

agents (Stevens, Abdallah et al. 2011; Liu, Stevens et al. 2014).  While the 
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magnitude of these projects and the sophistication of the technologies utilized 

are certainly appealing, application of the same goals and framework from the 

past few decades may yield similar results.  For example, while high-throughput 

sequencing can identify candidate molecular targets, and precisely designed 

drugs can effectively eliminate massive numbers of cancer cells initially, genome 

chaos can create new survivable systems with completely different genetic 

profiles, making the initially administered targeted therapy now off-target.  To 

explain this situation, we have recently applied cancer evolutionary theory to 

unify the hallmarks of cancer (Figure 9) (Horne, Pollick et al. 2015). 

Based on the conclusions from this project and previous efforts, the 

degree of stress (e.g. drug concentration) introduced to cancer cells plays the 

major role in triggering genome chaos as opposed to the specific marker that is 

directly targeted (Stevens, Abdallah et al. 2011; Liu, Stevens et al. 2014).  This is 

critical information for both drug development and treatment administration, as 

current emphasis is on the application of precision medicine and administration  

of combination therapy in order to maximize tumor cell death counts.  Regardless 

of the therapeutic approach selected, these studies would suggest that 

aggressive therapy in many forms would result in the same outcome: genome 

chaos induction and outlier-driven robust drug resistance.   

 Understanding that administration of the maximum tolerated dose is the 

current standard of care for most patients, considerations should be made with 

regards to alternative therapeutic regimens to avoid treatment-induced, genome 
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Figure 9. Diagram depicting the impact of stress-induced chromosomal 
instability in the context of genome-mediated cancer evolution.  Different 
chromosomes of the genome are designated by color (red, blue, yellow).  The 
hallmarks of cancer (shown surrounding the chromosomes, hallmark symbols 
derived from Hanahan and Weinberg, 2011) can serve as sources of stress to 
the genome as represented by lightning bolts, resulting in rapid, stochastic 
genome fragmentation and genome topology reorganization.  The consequences 
of this process are increased karyotypic heterogeneity and evolutionary potential, 
as shown by numerical aberrations (e.g. aneuploidy) and/or structural aberrations 
(e.g. translocations).  Breakdown of system constraints and alteration of genome 
topology result in phenotypic variance, as represented by different highlighted 
hallmark combinations for each genome system.  Stable karyotypes that survive 
this process are selected for clonal expansion, and this process cycles upon 
future internal/external crisis events.  Reproduced from Horne, Pollick et al. 2015 
with permission from John Wiley & Sons Inc. 
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chaos-driven cancer drug resistance in patients.  As previously discussed, 

regimens including adaptive therapy and metronomic therapy, which both involve 

the administration of lower dosages than the maximum tolerated dose, have 

shown early success (Kerbel and Kamen 2004; Gatenby, Silva et al. 2009; Silva, 

Kam et al. 2012).  We propose that perhaps these successes could be explained 

by the findings of this study and of future efforts, where lower doses of 

therapeutics could effectively constrain tumor cell counts without inducing 

genome chaos-mediated macro-cellular evolution.  Lower dose regimens could 

still potentially induce alterations at other levels (e.g. gene mutations, epigenetic 

alterations), representing cancer drug resistance at a micro-cellular evolutionary 

level.  We have previously proposed the relationship of different degrees of 

generalized stress and their impact on different genetic levels (Figure 10) (Liu, 

Stevens et al. 2014; Horne, Chowdhury et al. 2014; Horne, Pollick et al. 2015; 

Heng 2015; Heng, Horne et al. 2016).  The impact of low-dose therapeutics on 

lower levels of genetic dynamics must be further explored as well as the 

determination of thresholds that induce genome chaos in order to maintain 

genome constraint while safely and efficiently eliminating tumor cells.  Finally, 

patient tumor samples should be analyzed prior to treatment in an effort to profile 

the overall cancer genome stability of a patient.  We have observed higher 

instances of induced genome chaos after treating cells displaying higher genome 

instability (Liu, Stevens et al. 2014).  This critical measurement could contribute 

to the development of a more beneficial treatment plan to patients displaying 
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Figure 10. Diagram illustrating the relationship between stress, genome 
topology alteration, resulting genetic network reorganization, and 
successful evolutionary selection.  Different chromosomes are designated by 
color (red, yellow, blue) and drawn within the nucleus, representing the genome, 
and genes are designated A, B, C, D, E, F within the chromosomes.  
Corresponding protein networks are illustrated by the relationships between 
proteins A, B, C, D, E, F.  A cell is exposed to a moderate level of stress (A), 
resulting in genetic and/or epigenetic alteration as indicated by asterisks (*) next 
to impacted proteins.  The cell survives the stress event without genome-level 
alteration.  When a cell is exposed to a high level of stress (B), this results in 
genome topology alteration represented by numerical aberrations (e.g. 
aneuploidy) and/or structural aberrations (e.g. translocations).  This directly 
affects the physical three-dimensional relationship between genes and changes 
the overall genetic network structure, resulting in drastic systemic changes 
beyond the influence of genetic and/or epigenetic alterations that may 
concurrently occur.  As a consequence, the corresponding protein network 
changes are shown by altered relationships between proteins.  These new 
genomic systems then undergo evolutionary selection, and those that are 
stochastically selected upon may clonally expand and dominate the cell 
population.  Reproduced from Horne, Chowdhury et al. 2014 with permission 
from Frontiers Media S.A. 



www.manaraa.com

	 74	

unstable cancer genomes while avoiding the unnecessary (and potentially 

detrimental) administration of harsh treatment. 

Expansion of this project by incorporation additional models and treatment 
strategies will confirm the general role of drug-induced macro-cellular 
evolution in cancer drug resistance 
 
 In this project, we utilized an in vitro model designed to watch evolution-in-

action in order to identify the transition between effective initial cell killing with 

high-dose doxorubicin and rapid drug resistance.  To validate our findings and 

confirm this outlier-driven transition as a general phenomenon, this project 

should be expanded to include the administration of high doses of various 

therapeutic agents.  Expansion of this study would also incorporate the testing 

and monitoring of additional cell lines and in vivo models.  Ideally, patient tumor 

samples would be collected and analyzed pre- and post-treatment in an attempt 

to capture this transition in the clinic. 

Identification of a treatment “balancing act” consisting of cancer genome 
constraint and tumor cell population control would provide insight for 
future treatment regimen development 
 

Another future direction for this study is the confirmation of cancer 

genome level constraint with lower doses of therapeutic agents (i.e. lower cell 

killing without the induction of genome chaos), providing explanation for the 

earlier successes of alternative regimens that involve lower dose treatments. 

This could be accomplished by designing future experiments involving a panel of 

agents at various concentrations to search for a treatment balance, where certain 

degrees of drug-related stress are capable of controlling tumor cell population 
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counts, but these are not too high to trigger genome chaos-mediated cancer drug 

resistance. 

Extensive profiling of aggressive outliers and genome chaos will be  
necessary to further understand the relationship between different levels of 
genetic change and emergent features 
 
 As described in Chapter 2, the identification of drug-induced aggressive 

outliers was accomplished through cell growth monitoring of single-cell derived 

populations after treatment and recovery.  We also demonstrated that aggressive 

outliers displayed altered karyotypes as the result of drug-related stress-induced 

genome chaos.  We further demonstrated that altered genomes display elevated 

transcriptome dynamics (Stevens, Horne et al. 2013; Stevens, Liu et al. 2014; 

Horne, Liu et al. submitted). However, many questions remained unanswered 

regarding the profiles of these outlier groups.  This includes the identification of 

gene mutations and impacted pathways with single-cell level DNA sequencing 

and determining the contributions of these in terms of increased genome level re-

organization and cancer drug resistance.  In addition to rapid proliferation, 

additional features including metabolic profiles, immune evasion and migration 

could be assessed and linked to the findings from genetic profiling.  This type of 

analysis could reveal key general mechanistic understandings underlying the 

phenomena we observed at the karyotype level.   

Specifically, single-cell resolution sequencing technologies could be 

employed to trace the entire process of drug-induced genome chaos, for 

example.  This would include sequencing genomes of tumor cells during key 
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stages (e.g. tumor genomes prior to treatment, chaotic genomes present shortly 

after treatment, and altered, stable genomes after re-organization and selection) 

followed by the identification of genes and pathways that could be linked to 

karyotypic alteration (e.g. stress pathways, DNA repair mechanisms, gene 

mutation patterns that are essential for genome re-organization).  Furthermore, 

based on our current in vitro analyses with limited chemotherapeutics, parallel 

experiments must be examined to include more specific molecular targeting 

agents to demonstrate the same mechanisms.  Such understanding is crucial for 

the field to accept this reality of cancer drug resistance, as it is not just 

associated with chemotherapeutics, but rather all interventions that aim to kill 

cancer cells.  Alternative approaches that aim to manage cancer (rather than 

maximize cell death) need to be examined.  Examples include changing the 

evolutionary pattern or speed to constrain cancer cells and paying more attention 

to tissue and higher systems above the individual cell level.  Moreover, animal 

models and patient samples must be systematically examined based on our in 

vitro findings.  One potential clinical strategy is to profile general genome 

instability for patients to predict the likelihood of genome chaos, and careful 

consideration must be made when considering maximum tolerated dose 

regimens for subsets of patients that display unstable cancer genomes.  These 

proposed directions should identify some order within the chaos, improve our 

odds in the “War on Cancer,” and deepen our understanding of cancer drug 

resistance. 
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APPENDIX A: HEMACYTOMETER-BASED CELL COUNTING RESULTS OF 
SIX DOXORUBICIN HIGH-DOSE TREATMENT TRIALS  
 

Trial 1 C1 C2 C3 C4 
C1-4 
Sum C5 C6 C7 C8 

C5-8 
Sum 

Sum 
Avg D.F. Total 

Control 
1.1 41 32 32 32 137 29 34 46 58 167 152 0.5 1.9x10^5 
Control 
1.2 23 25 32 51 131 42 37 35 33 147 139 0.5 1.7x10^5 
Control 
1.3 31 35 36 48 150 21 33 32 25 111 130.5 0.5 1.6x10^5 
Control 
1.4 28 26 41 27 122 27 20 42 23 112 117 0.5 1.5x10^5 
Control 
2.1 39 28 36 37 140 23 31 61 46 161 150.5 0.5 1.9x10^5 
Control 
2.2 13 32 50 42 137 35 36 32 26 129 133 0.5 1.7x10^5 
Control 
2.3 43 27 45 30 145 37 36 35 20 128 136.5 0.5 1.7x10^5 
Control 
2.4 35 18 26 40 119 35 60 24 49 168 143.5 0.5 1.8x10^5 
Control 
3.1 30 29 39 50 148 56 51 27 36 170 159 0.5 2.0x10^5 
Control 
3.2 41 28 52 59 180 58 33 52 32 175 177.5 0.5 2.2x10^5 
Control 
3.3 30 28 43 41 142 58 52 29 36 175 158.5 0.5 2.0x10^5 
Control 
3.4 44 29 59 43 175 60 54 37 32 183 179 0.5 2.2x10^5 
Control 
4.1 26 29 58 39 152 40 36 58 32 166 159 0.5 2.0x10^5 
Control 
4.2 32 34 24 45 135 31 26 26 22 105 120 0.5 1.5x10^5 
Control 
4.3 40 29 28 70 167 42 62 41 33 178 172.5 0.5 2.2x10^5 
Control 
4.4 20 40 38 47 145 29 41 35 34 139 142 0.5 1.8x10^5 
Sample 
1.1 30 25 25 22 102 29 50 23 38 140 121 0.5 1.5x10^5 
Sample 
1.2 16 18 23 18 75 29 27 20 11 87 81 0.5 1.0x10^5 
Sample 
1.3 25 10 22 19 76 22 13 14 19 68 72 0.5 9.0x10^4 
Sample 
1.4 15 3 12 12 42 21 11 10 24 66 54 0.25 3.4x10^4 
Sample 
2.1 0 0 0 0 0 0 0 0 0 0 0 0 0 
Sample 
2.2 0 0 0 0 0 0 0 0 0 0 0 0 0 
Sample 
2.3 0 0 0 0 0 0 0 0 0 0 0 0 0 
Sample 
2.4 0 0 0 0 0 0 0 0 0 0 0 0 0 
Sample 
3.1 74 56 100 116 346 91 96 53 63 303 324.5 0.5 4.1x10^5 
Sample 
3.2 57 57 89 68 271 89 89 69 60 307 289 0.5 3.6x10^5 
Sample 
3.3 62 67 103 102 334 92 66 81 64 303 318.5 0.5 4.0x10^5 
Sample 
3.4 48 23 14 41 126 78 67 53 36 234 180 0.5 2.3x10^5 
Sample 
4.1 0 0 0 0 0 0 0 0 0 0 0 0 0 
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Sample 
4.2 0 0 0 0 0 0 0 0 0 0 0 0 0 
Sample 
4.3 0 0 0 0 0 0 0 0 0 0 0 0 0 
Sample 
4.4 0 0 0 0 0 0 0 0 0 0 0 0 0 
Sample 
5.1 31 24 27 35 117 45 34 38 38 155 136 0.5 1.7x10^5 
Sample 
5.2 46 49 36 45 176 51 55 48 49 203 189.5 0.5 2.4x10^5 
Sample 
5.3 26 29 31 26 112 18 39 48 29 134 123 0.5 1.5x10^5 
Sample 
5.4 55 64 101 73 293 102 91 57 69 319 306 0.5 3.8x10^5 
Sample 
6.1 0 0 0 0 0 0 0 0 0 0 0 0 0 
Sample 
6.2 0 0 0 0 0 0 0 0 0 0 0 0 0 
Sample 
6.3 0 0 0 0 0 0 0 0 0 0 0 0 0 
Sample 
6.4 0 0 0 0 0 0 0 0 0 0 0 0 0 
Sample 
7.1 15 13 17 20 65 9 14 17 11 51 58 0.5 7.3x10^4 
Sample 
7.2 14 15 17 14 60 21 24 15 13 73 66.5 0.5 8.3x10^4 
Sample 
7.3 17 9 9 12 47 25 23 14 22 84 65.5 0.5 8.2x10^4 
Sample 
7.4 12 9 16 11 48 9 21 12 18 60 54 0.5 6.8x10^4 
Sample 
8.1 0 0 0 0 0 0 0 0 0 0 0 0 0 
Sample 
8.2 0 0 0 0 0 0 0 0 0 0 0 0 0 
Sample 
8.3 0 0 0 0 0 0 0 0 0 0 0 0 0 
Sample 
8.4 0 0 0 0 0 0 0 0 0 0 0 0 0 
Sample 
9.1 0 0 0 0 0 0 0 0 0 0 0 0 0 
Sample 
9.2 0 0 0 0 0 0 0 0 0 0 0 0 0 
Sample 
9.3 0 0 0 0 0 0 0 0 0 0 0 0 0 
Sample 
9.4 0 0 0 0 0 0 0 0 0 0 0 0 0 
Sample 
10.1 0 0 0 0 0 0 0 0 0 0 0 0 0 
Sample 
10.2 0 0 0 0 0 0 0 0 0 0 0 0 0 
Sample 
10.3 0 0 0 0 0 0 0 0 0 0 0 0 0 
Sample 
10.4 0 0 0 0 0 0 0 0 0 0 0 0 0 

Trial 2 C1 C2 C3 C4 
C1-4 
Sum C5 C6 C7 C8 

C5-8 
Sum 

Sum 
Avg D.F. Total 

Control 
5.1 6 12 12 10 40 12 13 4 11 40 40 0.5 5.0x10^4 
Control 
5.2 18 19 26 34 97 37 37 13 24 111 104 0.5 1.3x10^5 
Control 
5.3 14 11 14 5 44 14 19 20 13 66 55 0.5 6.9x10^4 
Control 
5.4 12 6 12 11 41 17 10 11 6 44 42.5 0.5 5.3x10^4 
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Control 
6.1 66 58 83 87 294 88 112 74 75 349 321.5 0.5 4.0x10^5 
Control 
6.2 32 33 30 39 134 36 44 41 30 151 142.5 0.5 1.8x10^5 
Control 
6.3 40 42 76 72 230 82 98 48 64 292 261 0.5 3.3x10^5 
Control 
6.4 47 33 75 64 219 53 57 37 36 183 201 0.5 2.5x10^5 
Control 
7.1 59 73 72 120 324 112 124 64 59 359 341.5 0.5 4.3x10^5 
Control 
7.2 72 57 64 92 285 48 58 39 37 182 233.5 0.5 2.9x10^5 
Control 
7.3 57 63 129 121 370 114 102 77 42 335 352.5 0.5 4.4x10^5 
Control 
7.4 38 35 52 70 195 68 36 48 50 202 198.5 0.5 2.5x10^5 
Control 
8.1 51 49 104 104 308 90 104 57 44 295 301.5 0.5 3.8x10^5 
Control 
8.2 41 41 74 64 220 89 46 53 64 252 236 0.5 3.0x10^5 
Control 
8.3 63 81 92 110 346 105 91 58 63 317 331.5 0.5 4.1x10^5 
Control 
8.4 56 47 79 78 260 74 72 68 42 256 258 0.5 3.2x10^5 
Sample 
11.1 0 0 0 0 0 0 0 0 0 0 0 0 0 
Sample 
11.2 0 0 0 0 0 0 0 0 0 0 0 0 0 
Sample 
11.3 0 0 0 0 0 0 0 0 0 0 0 0 0 
Sample 
11.4 0 0 0 0 0 0 0 0 0 0 0 0 0 
Sample 
12.1 0 0 0 0 0 0 0 0 0 0 0 0 0 
Sample 
12.2 0 0 0 0 0 0 0 0 0 0 0 0 0 
Sample 
12.3 0 0 0 0 0 0 0 0 0 0 0 0 0 
Sample 
12.4 0 0 0 0 0 0 0 0 0 0 0 0 0 
Sample 
13.1 23 21 33 30 107 27 32 19 19 97 102 0.5 1.3x10^5 
Sample 
13.2 20 12 32 25 89 25 27 18 25 95 92 0.5 1.2x10^5 
Sample 
13.3 16 13 33 33 95 23 23 10 17 73 84 0.5 1.1x10^5 
Sample 
13.4 9 12 13 10 44 11 12 13 8 44 44 0.5 5.5x10^4 
Sample 
14.1 0 0 0 0 0 0 0 0 0 0 0 0 0 
Sample 
14.2 0 0 0 0 0 0 0 0 0 0 0 0 0 
Sample 
14.3 0 0 0 0 0 0 0 0 0 0 0 0 0 
Sample 
14.4 0 0 0 0 0 0 0 0 0 0 0 0 0 
Sample 
15.1 0 0 0 0 0 0 0 0 0 0 0 0 0 
Sample 
15.2 0 0 0 0 0 0 0 0 0 0 0 0 0 
Sample 
15.3 0 0 0 0 0 0 0 0 0 0 0 0 0 
Sample 
15.4 0 0 0 0 0 0 0 0 0 0 0 0 0 
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Sample 
16.1 16 14 29 34 93 23 25 25 15 88 90.5 0.5 1.1x10^5 
Sample 
16.2 8 12 17 20 57 12 15 13 12 52 54.5 0.5 6.8x10^4 
Sample 
16.3 14 22 23 20 79 28 25 13 20 86 82.5 0.5 1.0x10^5 
Sample 
16.4 16 19 21 33 89 26 17 17 11 71 80 0.5 1.0x10^5 
Sample 
17.1 18 14 22 26 80 39 33 25 18 115 97.5 0.25 6.1x10^4 
Sample 
17.2 18 20 28 37 103 21 35 18 20 94 98.5 0.25 6.2x10^4 
Sample 
17.3 21 18 30 16 85 29 20 29 25 103 94 0.25 5.9x10^4 
Sample 
17.4 30 15 26 30 101 33 32 16 24 105 103 0.25 6.4x10^4 
Sample 
18.1 0 0 0 0 0 0 0 0 0 0 0 0 0 
Sample 
18.2 0 0 0 0 0 0 0 0 0 0 0 0 0 
Sample 
18.3 0 0 0 0 0 0 0 0 0 0 0 0 0 
Sample 
18.4 0 0 0 0 0 0 0 0 0 0 0 0 0 
Sample 
19.1 11 14 18 11 54 9 19 9 19 56 55 0.25 3.4x10^4 
Sample 
19.2 6 13 20 17 56 20 33 18 10 81 68.5 0.25 4.3x10^4 
Sample 
19.3 12 21 18 13 64 25 20 5 15 65 64.5 0.25 4.0x10^4 
Sample 
19.4 11 14 19 37 81 28 22 25 29 104 92.5 0.25 5.8x10^4 
Sample 
20.1 11 21 18 8 58 13 15 15 12 55 56.5 0.25 3.5x10^4 
Sample 
20.2 10 7 10 8 35 10 5 9 8 32 33.5 0.25 2.1x10^4 
Sample 
20.3 3 15 8 1 27 10 5 9 8 32 29.5 0.25 1.8x10^4 
Sample 
20.4 16 2 3 3 24 12 7 13 4 36 30 0.25 1.9x10^4 

Trial 3 C1 C2 C3 C4 
C1-4 
Sum C5 C6 C7 C8 

C5-8 
Sum 

Sum 
Avg D.F. Total 

Control 
9.1 41 38 42 41 162 40 75 42 36 193 177.5 0.5 2.2x10^5 
Control 
9.2 54 56 123 93 326 43 63 41 55 202 264 0.5 3.3x10^5 
Control 
9.3 50 29 58 65 202 42 56 45 33 176 189 0.5 2.4x10^5 
Control 
9.4 26 39 58 46 169 32 45 38 44 159 164 0.5 2.1x10^5 
Control 
10.1 49 39 37 40 165 30 26 24 27 107 136 0.5 1.7x10^5 
Control 
10.2 51 29 45 62 187 33 32 18 25 108 147.5 0.5 1.8x10^5 
Control 
10.3 35 42 43 38 158 35 29 50 29 143 150.5 0.5 1.9x10^5 
Control 
10.4 38 44 40 35 157 34 25 34 40 133 145 0.5 1.8x10^5 
Control 
11.1 25 42 44 28 139 40 16 24 22 102 120.5 0.5 1.5x10^5 
Control 
11.2 41 34 48 31 154 23 29 35 32 119 136.5 0.5 1.7x10^5 
Control 
11.3 21 22 24 21 88 32 34 29 21 116 102 0.5 1.3x10^5 
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Control 
11.4 24 23 45 29 121 26 19 14 15 74 97.5 0.5 1.2x10^5 
Control 
12.1 43 25 22 29 119 48 38 49 29 164 141.5 0.5 1.8x10^5 
Control 
12.2 27 33 46 59 165 53 46 29 40 168 166.5 0.5 2.1x10^5 
Control 
12.3 22 32 39 33 126 39 52 34 41 166 146 0.5 1.8x10^5 
Control 
12.4 44 46 30 20 140 30 34 24 32 120 130 0.5 1.6x10^5 
Sample 
21.1 0 0 0 0 0 0 0 0 0 0 0 0 0 
Sample 
21.2 0 0 0 0 0 0 0 0 0 0 0 0 0 
Sample 
21.3 0 0 0 0 0 0 0 0 0 0 0 0 0 
Sample 
21.4 0 0 0 0 0 0 0 0 0 0 0 0 0 
Sample 
22.1 0 0 0 0 0 0 0 0 0 0 0 0 0 
Sample 
22.2 0 0 0 0 0 0 0 0 0 0 0 0 0 
Sample 
22.3 0 0 0 0 0 0 0 0 0 0 0 0 0 
Sample 
22.4 0 0 0 0 0 0 0 0 0 0 0 0 0 
Sample 
23.1 22 27 16 21 86 17 16 15 25 73 79.5 0.25 5.0x10^4 
Sample 
23.2 23 25 23 21 92 29 24 29 27 109 100.5 0.25 6.3x10^4 
Sample 
23.3 28 9 24 19 80 23 15 25 45 108 94 0.25 5.9x10^4 
Sample 
23.4 16 26 20 28 90 10 36 34 30 110 100 0.25 6.3x10^4 
Sample 
24.1 20 15 21 27 83 26 17 29 24 96 89.5 0.25 5.6x10^4 
Sample 
24.2 13 8 20 15 56 22 13 31 19 85 70.5 0.25 4.4x10^4 
Sample 
24.3 21 17 12 17 67 21 16 8 8 53 60 0.25 3.8x10^4 
Sample 
24.4 24 28 9 19 80 19 24 18 15 76 78 0.25 4.9x10^4 
Sample 
25.1 0 0 0 0 0 0 0 0 0 0 0 0 0 
Sample 
25.2 0 0 0 0 0 0 0 0 0 0 0 0 0 
Sample 
25.3 0 0 0 0 0 0 0 0 0 0 0 0 0 
Sample 
25.4 0 0 0 0 0 0 0 0 0 0 0 0 0 
Sample 
26.1 0 0 0 0 0 0 0 0 0 0 0 0 0 
Sample 
26.2 0 0 0 0 0 0 0 0 0 0 0 0 0 
Sample 
26.3 0 0 0 0 0 0 0 0 0 0 0 0 0 
Sample 
26.4 0 0 0 0 0 0 0 0 0 0 0 0 0 
Sample 
27.1 0 0 0 0 0 0 0 0 0 0 0 0 0 
Sample 
27.2 0 0 0 0 0 0 0 0 0 0 0 0 0 
Sample 
27.3 0 0 0 0 0 0 0 0 0 0 0 0 0 
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Sample 
27.4 0 0 0 0 0 0 0 0 0 0 0 0 0 
Sample 
28.1 56 52 90 65 263 72 63 47 36 218 240.5 0.5 3.0x10^5 
Sample 
28.2 61 74 105 102 342 87 88 58 53 286 314 0.5 3.9x10^5 
Sample 
28.3 41 88 73 86 288 72 60 109 84 325 306.5 0.5 3.8x10^5 
Sample 
28.4 47 47 87 67 248 77 81 58 59 275 261.5 0.5 3.3x10^5 
Sample 
29.1 0 0 0 0 0 0 0 0 0 0 0 0 0 
Sample 
29.2 0 0 0 0 0 0 0 0 0 0 0 0 0 
Sample 
29.3 0 0 0 0 0 0 0 0 0 0 0 0 0 
Sample 
29.4 0 0 0 0 0 0 0 0 0 0 0 0 0 
Sample 
30.1 0 0 0 0 0 0 0 0 0 0 0 0 0 
Sample 
30.2 0 0 0 0 0 0 0 0 0 0 0 0 0 
Sample 
30.3 0 0 0 0 0 0 0 0 0 0 0 0 0 
Sample 
30.4 0 0 0 0 0 0 0 0 0 0 0 0 0 

Trial 4 C1 C2 C3 C4 
C1-4 
Sum C5 C6 C7 C8 

C5-8 
Sum 

Sum 
Avg D.F. Total 

Control 
13.1 45 49 63 70 227 72 71 34 43 220 223.5 0.5 2.8x10^5 
Control 
13.2 42 56 85 59 242 67 78 39 40 224 233 0.5 2.9x10^5 
Control 
13.3 33 27 55 59 174 57 62 37 41 197 185.5 0.5 2.3x10^5 
Control 
13.4 45 30 23 33 131 38 37 30 26 131 131 0.5 1.6x10^5 
Control 
14.1 39 24 51 37 151 51 50 31 44 176 163.5 0.5 2.0x10^5 
Control 
14.2 30 29 63 58 180 34 41 31 33 139 159.5 0.5 2.0x10^5 
Control 
14.3 21 11 23 23 78 40 42 32 25 139 108.5 0.5 1.4x10^5 
Control 
14.4 21 32 29 20 102 20 35 27 25 107 104.5 0.5 1.3x10^5 
Control 
15.1 38 39 50 51 178 36 44 50 40 170 174 0.25 1.1x10^5 
Control 
15.2 53 84 93 81 311 103 97 99 79 378 344.5 0.25 2.2x10^5 
Control 
15.3 67 95 109 122 393 120 126 71 72 389 391 0.25 2.4x10^5 
Control 
15.4 88 78 117 143 426 110 119 68 104 401 413.5 0.25 2.6x10^5 
Control 
16.1 31 44 57 52 184 55 60 56 43 214 199 0.5 2.5x10^5 
Control 
16.2 60 46 63 53 222 79 64 42 54 239 230.5 0.5 2.9x10^5 
Control 
16.3 45 41 70 62 218 63 95 49 52 259 238.5 0.5 3.0x10^5 
Control 
16.4 32 34 51 44 161 47 41 36 34 158 159.5 0.5 2.0x10^5 
Sample 
31.1 0 0 0 0 0 0 0 0 0 0 0 0 0 
Sample 
31.2 0 0 0 0 0 0 0 0 0 0 0 0 0 
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Sample 
31.3 0 0 0 0 0 0 0 0 0 0 0 0 0 
Sample 
31.4 0 0 0 0 0 0 0 0 0 0 0 0 0 
Sample 
32.1 0 0 0 0 0 0 0 0 0 0 0 0 0 
Sample 
32.2 0 0 0 0 0 0 0 0 0 0 0 0 0 
Sample 
32.3 0 0 0 0 0 0 0 0 0 0 0 0 0 
Sample 
32.4 0 0 0 0 0 0 0 0 0 0 0 0 0 
Sample 
33.1 0 0 0 0 0 0 0 0 0 0 0 0 0 
Sample 
33.2 0 0 0 0 0 0 0 0 0 0 0 0 0 
Sample 
33.3 0 0 0 0 0 0 0 0 0 0 0 0 0 
Sample 
33.4 0 0 0 0 0 0 0 0 0 0 0 0 0 
Sample 
34.1 0 0 0 0 0 0 0 0 0 0 0 0 0 
Sample 
34.2 0 0 0 0 0 0 0 0 0 0 0 0 0 
Sample 
34.3 0 0 0 0 0 0 0 0 0 0 0 0 0 
Sample 
34.4 0 0 0 0 0 0 0 0 0 0 0 0 0 
Sample 
35.1 0 0 0 0 0 0 0 0 0 0 0 0 0 
Sample 
35.2 0 0 0 0 0 0 0 0 0 0 0 0 0 
Sample 
35.3 0 0 0 0 0 0 0 0 0 0 0 0 0 
Sample 
35.4 0 0 0 0 0 0 0 0 0 0 0 0 0 
Sample 
36.1 0 0 0 0 0 0 0 0 0 0 0 0 0 
Sample 
36.2 0 0 0 0 0 0 0 0 0 0 0 0 0 
Sample 
36.3 0 0 0 0 0 0 0 0 0 0 0 0 0 
Sample 
36.4 0 0 0 0 0 0 0 0 0 0 0 0 0 
Sample 
37.1 0 0 0 0 0 0 0 0 0 0 0 0 0 
Sample 
37.2 0 0 0 0 0 0 0 0 0 0 0 0 0 
Sample 
37.3 0 0 0 0 0 0 0 0 0 0 0 0 0 
Sample 
37.4 0 0 0 0 0 0 0 0 0 0 0 0 0 
Sample 
38.1 0 0 0 0 0 0 0 0 0 0 0 0 0 
Sample 
38.2 0 0 0 0 0 0 0 0 0 0 0 0 0 
Sample 
38.3 0 0 0 0 0 0 0 0 0 0 0 0 0 
Sample 
38.4 0 0 0 0 0 0 0 0 0 0 0 0 0 
Sample 
39.1 0 0 0 0 0 0 0 0 0 0 0 0 0 
Sample 
39.2 0 0 0 0 0 0 0 0 0 0 0 0 0 
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Sample 
39.3 0 0 0 0 0 0 0 0 0 0 0 0 0 
Sample 
39.4 0 0 0 0 0 0 0 0 0 0 0 0 0 
Sample 
40.1 25 22 26 33 106 38 51 28 37 154 130 0.5 1.6x10^5 
Sample 
40.2 40 37 26 25 128 38 37 25 24 124 126 0.5 1.6x10^5 
Sample 
40.3 25 29 19 36 109 42 63 38 22 165 137 0.5 1.7x10^5 
Sample 
40.4 36 32 73 53 194 62 55 34 43 194 194 0.5 2.4x10^5 

Trial 5 C1 C2 C3 C4 
C1-4 
Sum C5 C6 C7 C8 

C5-8 
Sum 

Sum 
Avg D.F. Total 

Control 
17.1 105 79 146 133 463 122 125 59 93 399 431 0.5 5.4x10^5 
Control 
17.2 74 80 128 110 392 127 109 92 69 397 394.5 0.5 4.9x10^5 
Control 
17.3 49 57 45 47 198 97 83 92 64 336 267 0.5 3.3x10^5 
Control 
17.4 55 54 89 98 296 95 88 106 93 382 339 0.5 4.2x10^5 
Control 
18.1 67 37 86 59 249 105 85 70 80 340 294.5 0.5 3.7x10^5 
Control 
18.2 51 40 46 46 183 74 71 70 63 278 230.5 0.5 2.9x10^5 
Control 
18.3 78 62 61 55 256 93 77 59 78 307 281.5 0.5 3.5x10^5 
Control 
18.4 75 84 59 53 271 85 90 96 90 361 316 0.5 4.0x10^5 
Control 
19.1 84 106 135 142 467 129 115 89 87 420 443.5 0.5 5.5x10^5 
Control 
19.2 46 43 79 75 243 90 93 61 54 298 270.5 1 6.8x10^5 
Control 
19.3 42 56 93 82 273 93 119 48 58 318 295.5 1 7.4x10^5 
Control 
19.4 58 46 110 102 316 125 101 47 57 330 323 1 8.1x10^5 
Control 
20.1 49 41 79 99 268 99 83 42 59 283 275.5 1 6.9x10^5 
Control 
20.2 36 39 45 38 158 66 62 45 34 207 182.5 1 4.6x10^5 
Control 
20.3 49 42 47 49 187 82 70 54 54 260 223.5 1 5.6x10^5 
Control 
20.4 33 38 56 42 169 58 66 34 42 200 184.5 1 4.6x10^5 
Sample 
41.1 0 0 0 0 0 0 0 0 0 0 0 0 0 
Sample 
41.2 0 0 0 0 0 0 0 0 0 0 0 0 0 
Sample 
41.3 0 0 0 0 0 0 0 0 0 0 0 0 0 
Sample 
41.4 0 0 0 0 0 0 0 0 0 0 0 0 0 
Sample 
42.1 9 17 12 20 58 17 13 14 9 53 55.5 0.5 7.0x10^4 
Sample 
42.2 12 9 12 13 46 13 12 9 14 48 47 0.5 5.9x10^4 
Sample 
42.3 17 13 17 22 69 33 21 15 21 90 79.5 0.5 9.9x10^4 
Sample 
42.4 15 13 32 19 79 22 18 17 12 69 74 0.5 9.3x10^4 
Sample 
43.1 0 0 0 0 0 0 0 0 0 0 0 0 0 
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Sample 
43.2 0 0 0 0 0 0 0 0 0 0 0 0 0 
Sample 
43.3 0 0 0 0 0 0 0 0 0 0 0 0 0 
Sample 
43.4 0 0 0 0 0 0 0 0 0 0 0 0 0 
Sample 
44.1 0 0 0 0 0 0 0 0 0 0 0 0 0 
Sample 
44.2 0 0 0 0 0 0 0 0 0 0 0 0 0 
Sample 
44.3 0 0 0 0 0 0 0 0 0 0 0 0 0 
Sample 
44.4 0 0 0 0 0 0 0 0 0 0 0 0 0 
Sample 
45.1 0 0 0 0 0 0 0 0 0 0 0 0 0 
Sample 
45.2 0 0 0 0 0 0 0 0 0 0 0 0 0 
Sample 
45.3 0 0 0 0 0 0 0 0 0 0 0 0 0 
Sample 
45.4 0 0 0 0 0 0 0 0 0 0 0 0 0 
Sample 
46.1 0 0 0 0 0 0 0 0 0 0 0 0 0 
Sample 
46.2 0 0 0 0 0 0 0 0 0 0 0 0 0 
Sample 
46.3 0 0 0 0 0 0 0 0 0 0 0 0 0 
Sample 
46.4 0 0 0 0 0 0 0 0 0 0 0 0 0 
Sample 
47.1 0 0 0 0 0 0 0 0 0 0 0 0 0 
Sample 
47.2 0 0 0 0 0 0 0 0 0 0 0 0 0 
Sample 
47.3 0 0 0 0 0 0 0 0 0 0 0 0 0 
Sample 
47.4 0 0 0 0 0 0 0 0 0 0 0 0 0 
Sample 
48.1 0 0 0 0 0 0 0 0 0 0 0 0 0 
Sample 
48.2 0 0 0 0 0 0 0 0 0 0 0 0 0 
Sample 
48.3 0 0 0 0 0 0 0 0 0 0 0 0 0 
Sample 
48.4 0 0 0 0 0 0 0 0 0 0 0 0 0 
Sample 
49.1 29 29 32 22 112 31 36 40 45 152 132 0.5 1.7x10^5 
Sample 
49.2 31 23 39 37 130 44 41 30 43 158 144 0.5 1.8x10^5 
Sample 
49.3 51 41 42 26 160 62 47 42 45 196 178 0.5 2.2x10^5 
Sample 
49.4 17 20 18 29 84 35 45 31 44 155 119.5 0.5 1.5x10^5 
Sample 
50.1 56 57 102 92 307 83 95 68 54 300 303.5 0.5 3.8x10^5 
Sample 
50.2 71 45 117 128 361 116 115 69 69 369 365 0.5 4.6x10^5 
Sample 
50.3 78 93 119 113 403 170 136 78 83 467 435 0.5 5.4x10^5 
Sample 
50.4 74 96 155 155 480 82 112 82 88 364 422 0.5 5.3x10^5 

Trial 6 C1 C2 C3 C4 
C1-4 
Sum C5 C6 C7 C8 

C5-8 
Sum 

Sum 
Avg  D.F. Total 
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Control 
21.1 43 51 51 55 200 88 100 59 60 307 253.5 0.5 3.2x10^5 
Control 
21.2 62 49 102 91 304 114 87 56 61 318 311 0.5 3.9x10^5 
Control 
21.3 40 40 80 80 240 75 71 46 58 250 245 0.5 3.1x10^5 
Control 
21.4 59 63 85 56 263 95 88 76 61 320 291.5 0.5 3.6x10^5 
Control 
22.1 79 63 58 74 274 93 77 55 55 280 277 0.5 3.5x10^5 
Control 
22.2 53 44 64 45 206 47 66 48 40 201 203.5 0.5 2.5x10^5 
Control 
22.3 61 62 100 82 305 75 89 74 68 306 305.5 0.5 3.8x10^5 
Control 
22.4 67 78 121 101 367 120 129 83 77 409 388 0.5 4.9x10^5 
Control 
23.1 72 52 59 52 235 71 78 43 45 237 236 0.5 3.0x10^5 
Control 
23.2 30 39 42 41 152 41 66 36 43 186 169 0.5 2.1x10^5 
Control 
23.3 31 39 37 30 137 41 48 36 40 165 151 0.5 1.9x10^5 
Control 
23.4 36 37 31 38 142 63 66 58 56 243 192.5 0.5 2.4x10^5 
Control 
24.1 34 43 39 41 157 60 61 57 36 214 185.5 0.5 2.3x10^5 
Control 
24.2 35 46 74 70 225 59 69 27 27 182 203.5 0.5 2.5x10^5 
Control 
24.3 54 57 73 87 271 126 98 60 51 335 303 0.5 3.8x10^5 
Control 
24.4 58 70 98 89 315 102 84 73 60 319 317 0.5 4.0x10^5 
Sample 
51.1 0 0 0 0 0 0 0 0 0 0 0 0 0 
Sample 
51.2 0 0 0 0 0 0 0 0 0 0 0 0 0 
Sample 
51.3 0 0 0 0 0 0 0 0 0 0 0 0 0 
Sample 
51.4 0 0 0 0 0 0 0 0 0 0 0 0 0 
Sample 
52.1 0 0 0 0 0 0 0 0 0 0 0 0 0 
Sample 
52.2 0 0 0 0 0 0 0 0 0 0 0 0 0 
Sample 
52.3 0 0 0 0 0 0 0 0 0 0 0 0 0 
Sample 
52.4 0 0 0 0 0 0 0 0 0 0 0 0 0 
Sample 
53.1 29 27 49 49 154 54 63 45 29 191 172.5 0.5 2.2x10^5 
Sample 
53.2 18 24 22 36 100 29 40 32 21 122 111 0.5 1.4x10^5 
Sample 
53.3 28 16 25 28 97 30 41 35 29 135 116 0.5 1.5x10^5 
Sample 
53.4 23 11 36 34 104 25 40 17 31 113 108.5 0.5 1.4x10^5 
Sample 
54.1 21 16 22 30 89 28 36 24 18 106 97.5 0.5 1.2x10^5 
Sample 
54.2 21 18 24 24 87 30 21 10 11 72 79.5 0.5 9.9x10^4 
Sample 
54.3 25 18 30 14 87 25 21 19 19 84 85.5 0.5 1.1x10^5 
Sample 
54.4 22 15 18 23 78 15 24 23 27 89 83.5 0.5 1.0x10^5 
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Sample 
55.1 17 11 22 11 61 18 22 23 16 79 70 0.5 8.8x10^4 
Sample 
55.2 17 12 14 21 64 14 17 13 14 58 61 0.5 7.6x10^4 
Sample 
55.3 8 14 15 16 53 15 16 11 12 54 53.5 0.5 6.7x10^4 
Sample 
55.4 10 11 11 14 46 21 15 8 18 62 54 0.5 6.8x10^4 
Sample 
56.1 0 0 0 0 0 0 0 0 0 0 0 0 0 
Sample 
56.2 0 0 0 0 0 0 0 0 0 0 0 0 0 
Sample 
56.3 0 0 0 0 0 0 0 0 0 0 0 0 0 
Sample 
56.4 0 0 0 0 0 0 0 0 0 0 0 0 0 
Sample 
57.1 0 0 0 0 0 0 0 0 0 0 0 0 0 
Sample 
57.2 0 0 0 0 0 0 0 0 0 0 0 0 0 
Sample 
57.3 0 0 0 0 0 0 0 0 0 0 0 0 0 
Sample 
57.4 0 0 0 0 0 0 0 0 0 0 0 0 0 
Sample 
58.1 0 0 0 0 0 0 0 0 0 0 0 0 0 
Sample 
58.2 0 0 0 0 0 0 0 0 0 0 0 0 0 
Sample 
58.3 0 0 0 0 0 0 0 0 0 0 0 0 0 
Sample 
58.4 0 0 0 0 0 0 0 0 0 0 0 0 0 
Sample 
59.1 0 0 0 0 0 0 0 0 0 0 0 0 0 
Sample 
59.2 0 0 0 0 0 0 0 0 0 0 0 0 0 
Sample 
59.3 0 0 0 0 0 0 0 0 0 0 0 0 0 
Sample 
59.4 0 0 0 0 0 0 0 0 0 0 0 0 0 
Sample 
60.1 0 0 0 0 0 0 0 0 0 0 0 0 0 
Sample 
60.2 0 0 0 0 0 0 0 0 0 0 0 0 0 
Sample 
60.3 0 0 0 0 0 0 0 0 0 0 0 0 0 
Sample 
60.4 0 0 0 0 0 0 0 0 0 0 0 0 0 

 

C1-C8: Count 1 – Count 8; D.F.: Dilution factor; Treated samples that did not 
recover during the recovery period were given zero values. 
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APPENDIX B: HEMACYTOMETER-BASED CELL COUNTING RESULTS OF 
THREE DOXORUBICIN LOW-DOSE TREATMENT TRIALS 
 

Trial 1 C1 C2 C3 C4 
C1-4 
Sum C5 C6 C7 C8 

C5-8 
Sum 

Sum 
Avg D.F. Total 

Control 
1.1 53 54 86 99 292 47 48 67 50 212 252 0.5 3.2x10^5 
Control 
1.2 67 54 75 83 279 80 114 62 61 317 298 0.5 3.7x10^5 
Control 
1.3 58 58 109 99 324 80 69 68 64 281 302.5 0.5 3.8x10^5 
Control 
1.4 54 50 66 61 231 79 76 67 60 282 256.5 0.5 3.2x10^5 
Control 
2.1 46 43 57 50 196 83 50 48 43 224 210 0.5 2.6x10^5 
Control 
2.2 50 54 71 67 242 46 49 36 52 183 212.5 0.5 2.7x10^5 
Control 
2.3 34 51 41 42 168 64 59 36 40 199 183.5 0.5 2.3x10^5 
Control 
2.4 71 43 83 74 271 54 72 58 42 226 248.5 0.5 3.1x10^5 
Control 
3.1 61 67 78 83 289 85 91 49 67 292 290.5 0.5 3.6x10^5 
Control 
3.2 65 67 90 119 341 115 94 63 60 332 336.5 0.5 4.2x10^5 
Control 
3.3 57 64 74 88 283 70 65 72 73 280 281.5 0.5 3.5x10^5 
Control 
3.4 60 55 61 88 264 56 64 74 74 268 266 0.5 3.3x10^5 
Sample 
1.1 44 61 46 74 225 47 55 54 59 215 220 0.5 2.8x10^5 
Sample 
1.2 62 43 98 76 279 79 35 34 47 195 237 0.5 3.0x10^5 
Sample 
1.3 41 43 59 66 209 77 73 62 31 243 226 0.5 2.8x10^5 
Sample 
1.4 40 32 96 64 232 51 33 38 47 169 200.5 0.5 2.5x10^5 
Sample 
2.1 55 47 83 85 270 67 68 59 63 257 263.5 0.5 3.3x10^5 
Sample 
2.2 66 68 102 101 337 80 79 75 62 296 316.5 0.5 4.0x10^5 
Sample 
2.3 59 66 80 129 334 101 141 65 58 365 349.5 0.5 4.4x10^5 
Sample 
2.4 45 43 61 73 222 81 109 55 55 300 261 0.5 3.3x10^5 
Sample 
3.1 84 68 107 123 382 124 112 85 67 388 385 0.5 4.8x10^5 
Sample 
3.2 88 82 68 113 351 77 97 73 69 316 333.5 0.5 4.2x10^5 
Sample 
3.3 87 76 113 97 373 161 157 82 109 509 441 0.5 5.5x10^5 
Sample 
3.4 77 75 96 144 392 84 95 85 93 357 374.5 0.5 4.7x10^5 
Sample 
4.1 73 57 96 65 291 56 66 44 60 226 258.5 0.5 3.2x10^5 
Sample 
4.2 54 62 88 94 298 51 66 68 39 224 261 0.5 3.3x10^5 
Sample 
4.3 83 70 101 91 345 129 108 71 86 394 369.5 0.5 4.6x10^5 
Sample 
4.4 88 70 95 133 386 74 155 63 75 367 376.5 0.5 4.7x10^5 
Sample 
5.1 23 19 27 27 96 17 44 22 33 116 106 0.5 1.3x10^5 
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Sample 
5.2 28 32 48 48 156 44 72 46 50 212 184 0.5 2.3x10^5 
Sample 
5.3 40 27 38 38 143 52 41 28 51 172 157.5 0.5 2.0x10^5 
Sample 
5.4 37 30 47 28 142 36 41 26 28 131 136.5 0.5 1.7x10^5 
Sample 
6.1 39 46 43 44 172 55 50 43 40 188 180 0.5 2.3x10^5 
Sample 
6.2 51 52 51 50 204 49 49 51 51 200 202 0.5 2.5x10^5 
Sample 
6.3 51 48 49 50 198 51 64 54 54 223 210.5 0.5 2.6x10^5 
Sample 
6.4 69 63 68 56 256 61 54 56 51 222 239 0.5 3.0x10^5 
Sample 
7.1 38 34 50 40 162 35 28 45 37 145 153.5 0.5 1.9x10^5 
Sample 
7.2 31 29 59 53 172 64 69 37 45 215 193.5 0.5 2.4x10^5 
Sample 
7.3 62 60 57 63 242 86 88 48 50 272 257 0.5 3.2x10^5 
Sample 
7.4 51 48 60 68 227 46 37 47 48 178 202.5 0.5 2.5x10^5 
Sample 
8.1 58 40 54 39 191 43 46 39 56 184 187.5 0.5 2.3x10^5 
Sample 
8.2 44 41 59 78 222 45 47 45 46 183 202.5 0.5 2.5x10^5 
Sample 
8.3 58 67 53 37 215 83 85 48 65 281 248 0.5 3.1x10^5 
Sample 
8.4 61 57 70 64 252 49 54 33 59 195 223.5 0.5 2.8x10^5 
Sample 
9.1 69 38 35 52 194 91 60 64 60 275 234.5 0.5 2.9x10^5 
Sample 
9.2 59 55 78 72 264 57 91 68 58 274 269 0.5 3.4x10^5 
Sample 
9.3 53 56 51 37 197 84 88 52 71 295 246 0.5 3.1x10^5 
Sample 
9.4 56 42 57 69 224 41 46 50 60 197 210.5 0.5 2.6x10^5 
Sample 
10.1 94 86 117 95 392 101 101 76 89 367 379.5 0.5 4.7x10^5 
Sample 
10.2 111 103 129 119 462 102 156 99 79 436 449 0.5 5.6x10^5 
Sample 
10.3 98 59 119 111 387 72 75 67 88 302 344.5 0.5 4.3x10^5 
Sample 
10.4 89 52 91 77 309 119 132 81 83 415 362 0.5 4.5x10^5 

Trial 2 C1 C2 C3 C4 
C1-4 
Sum C5 C6 C7 C8 

C5-8 
Sum 

Sum 
Avg D.F. Total 

Control 
4.1 43 29 39 38 149 74 63 38 50 225 187 0.5 2.3x10^5 
Control 
4.2 44 57 45 35 181 73 59 39 49 220 200.5 0.5 2.5x10^5 
Control 
4.3 50 47 41 44 182 107 71 61 51 290 236 0.5 3.0x10^5 
Control 
4.4 34 32 69 51 186 68 57 37 31 193 189.5 0.5 2.4x10^5 
Control 
5.1 60 46 31 30 167 74 79 42 47 242 204.5 0.5 2.6x10^5 
Control 
5.2 60 62 66 59 247 60 57 45 50 212 229.5 0.5 2.9x10^5 
Control 
5.3 60 60 63 75 258 41 59 42 47 189 223.5 0.5 2.8x10^5 
Control 
5.4 43 54 48 49 194 77 58 39 43 217 205.5 0.5 2.6x10^5 
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Control 
6.1 42 51 73 51 217 54 46 39 32 171 194 0.5 2.4x10^5 
Control 
6.2 26 46 42 56 170 65 57 63 46 231 200.5 0.5 2.5x10^5 
Control 
6.3 51 41 85 76 253 62 72 34 54 222 237.5 0.5 3.0x10^5 
Control 
6.4 45 51 52 58 206 82 73 41 62 258 232 0.5 2.9x10^5 
Control 
7.1 40 42 57 71 210 75 69 39 42 225 217.5 0.5 2.7x10^5 
Control 
7.2 40 37 43 43 163 55 54 41 37 187 175 0.5 2.2x10^5 
Control 
7.3 37 34 75 68 214 41 47 52 50 190 202 0.5 2.5x10^5 
Control 
7.4 41 39 52 47 179 66 80 45 37 228 203.5 0.5 2.5x10^5 
Sample 
11.1 17 23 26 33 99 43 37 26 26 132 115.5 0.5 1.4x10^5 
Sample 
11.2 23 18 24 19 84 23 35 14 32 104 94 0.5 1.2x10^5 
Sample 
11.3 23 25 27 38 113 32 28 25 23 108 110.5 0.5 1.4x10^5 
Sample 
11.4 17 16 22 18 73 17 13 11 17 58 65.5 0.5 8.2x10^4 
Sample 
12.1 54 46 72 81 253 46 43 54 56 199 226 0.5 2.8x10^5 
Sample 
12.2 50 62 46 50 208 63 93 61 46 263 235.5 0.5 2.9x10^5 
Sample 
12.3 37 42 65 74 218 75 78 41 53 247 232.5 0.5 2.9x10^5 
Sample 
12.4 36 31 56 53 176 42 43 37 33 155 165.5 0.5 2.1x10^5 
Sample 
13.1 62 37 71 58 228 85 77 43 43 248 238 0.5 3.0x10^5 
Sample 
13.2 46 49 56 47 198 73 86 49 54 262 230 0.5 2.9x10^5 
Sample 
13.3 55 44 82 77 258 82 69 63 48 262 260 0.5 3.3x10^5 
Sample 
13.4 70 56 51 52 229 93 73 56 64 286 257.5 0.5 3.2x10^5 
Sample 
14.1 40 41 71 55 207 66 51 46 41 204 205.5 0.5 2.6x10^5 
Sample 
14.2 35 42 36 46 159 52 55 48 37 192 175.5 0.5 2.2x10^5 
Sample 
14.3 44 49 42 36 171 55 63 34 46 198 184.5 0.5 2.3x10^5 
Sample 
14.4 37 34 54 50 175 45 42 43 24 154 164.5 0.5 2.1x10^5 
Sample 
15.1 46 50 60 52 208 55 50 43 40 188 198 0.5 2.5x10^5 
Sample 
15.2 38 43 72 50 203 70 60 45 46 221 212 0.5 2.7x10^5 
Sample 
15.3 51 50 88 94 283 55 50 44 39 188 235.5 0.5 2.9x10^5 
Sample 
15.4 45 36 54 52 187 71 42 55 63 231 209 0.5 2.6x10^5 
Sample 
16.1 38 41 62 58 199 54 63 39 34 190 194.5 0.5 2.4x10^5 
Sample 
16.2 24 54 43 44 165 64 56 76 60 256 210.5 0.5 2.6x10^5 
Sample 
16.3 35 31 56 63 185 59 64 33 43 199 192 0.5 2.4x10^5 
Sample 
16.4 42 50 54 48 194 48 36 44 44 172 183 0.5 2.3x10^5 
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Sample 
17.1 61 52 92 75 280 102 79 30 44 255 267.5 0.5 3.3x10^5 
Sample 
17.2 57 59 54 57 227 82 97 43 47 269 248 0.5 3.1x10^5 
Sample 
17.3 39 30 53 51 173 55 48 40 38 181 177 0.5 2.2x10^5 
Sample 
17.4 44 28 75 73 220 94 64 53 45 256 238 0.5 3.0x10^5 
Sample 
18.1 48 49 60 64 221 86 102 59 39 286 253.5 0.5 3.2x10^5 
Sample 
18.2 36 42 61 62 201 41 37 46 41 165 183 0.5 2.3x10^5 
Sample 
18.3 41 26 56 50 173 75 85 48 53 261 217 0.5 2.7x10^5 
Sample 
18.4 48 59 41 45 193 46 35 48 52 181 187 0.5 2.3x10^5 
Sample 
19.1 52 37 45 45 179 59 61 37 33 190 184.5 0.5 2.3x10^5 
Sample 
19.2 38 35 62 52 187 52 53 32 42 179 183 0.5 2.3x10^5 
Sample 
19.3 59 48 50 53 210 79 60 49 31 219 214.5 0.5 2.7x10^5 
Sample 
19.4 41 43 76 57 217 39 54 39 41 173 195 0.5 2.4x10^5 
Sample 
20.1 50 71 112 86 319 56 68 53 54 231 275 0.5 3.4x10^5 
Sample 
20.2 53 47 85 83 268 81 94 68 38 281 274.5 0.5 3.4x10^5 
Sample 
20.3 82 46 74 76 278 94 94 72 57 317 297.5 0.5 3.7x10^5 
Sample 
20.4 59 58 86 90 293 84 92 64 81 321 307 0.5 3.8x10^5 

Trial 3 C1 C2 C3 C4 
C1-4 
Sum C5 C6 C7 C8 

C5-8 
Sum 

Sum 
Avg D.F. Total 

Control 
8.1 21 16 15 21 73 17 36 22 22 97 85 0.5 1.1x10^5 
Control 
8.2 23 22 41 43 129 28 26 19 24 97 113 0.5 1.4x10^5 
Control 
8.3 15 17 18 16 66 14 17 15 15 61 63.5 0.5 7.9x10^4 
Control 
8.4 16 23 28 22 89 14 21 15 7 57 73 0.5 9.1x10^4 
Control 
9.1 33 58 67 51 209 73 73 48 66 260 234.5 0.5 2.9x10^5 
Control 
9.2 69 56 86 93 304 69 81 50 55 255 279.5 0.5 3.5x10^5 
Control 
9.3 58 64 85 58 265 87 77 59 40 263 264 0.5 3.3x10^5 
Control 
9.4 62 61 70 57 250 77 80 63 68 288 269 0.5 3.4x10^5 
Control 
10.1 50 48 77 54 229 97 103 55 48 303 266 0.5 3.3x10^5 
Control 
10.2 61 48 61 63 233 106 91 63 53 313 273 0.5 3.4x10^5 
Control 
10.3 49 55 84 77 265 97 100 91 71 359 312 0.5 3.9x10^5 
Control 
10.4 33 55 63 69 220 50 56 64 47 217 218.5 0.5 2.7x10^5 
Control 
11.1 40 49 68 79 236 66 90 34 38 228 232 0.5 2.9x10^5 
Control 
11.2 46 37 44 54 181 58 55 36 29 178 179.5 0.5 2.2x10^5 
Control 
11.3 47 39 50 34 170 50 49 47 42 188 179 0.5 2.2x10^5 
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Control 
11.4 28 31 51 50 160 27 32 44 40 143 151.5 0.5 1.9x10^5 
Sample 
21.1 48 46 70 43 207 78 67 43 31 219 213 0.5 2.7x10^5 
Sample 
21.2 52 46 58 73 229 57 67 49 38 211 220 0.5 2.8x10^5 
Sample 
21.3 44 56 77 87 264 44 49 42 48 183 223.5 0.5 2.8x10^5 
Sample 
21.4 37 32 32 33 134 28 36 32 30 126 130 0.5 1.6x10^5 
Sample 
22.1 31 26 47 37 141 51 27 29 27 134 137.5 0.5 1.7x10^5 
Sample 
22.2 17 37 65 65 184 45 29 25 31 130 157 0.5 2.0x10^5 
Sample 
22.3 46 46 77 73 242 54 41 46 46 187 214.5 0.5 2.7x10^5 
Sample 
22.4 59 61 81 72 273 48 53 40 39 180 226.5 0.5 2.8x10^5 
Sample 
23.1 38 32 65 73 208 29 34 35 33 131 169.5 0.5 2.1x10^5 
Sample 
23.2 25 17 19 22 83 33 24 17 25 99 91 0.5 1.1x10^5 
Sample 
23.3 39 22 34 35 130 28 26 35 38 127 128.5 0.5 1.6x10^5 
Sample 
23.4 33 31 50 24 138 55 40 41 37 173 155.5 0.5 1.9x10^5 
Sample 
24.1 36 30 33 37 136 34 40 37 29 140 138 0.5 1.7x10^5 
Sample 
24.2 38 65 81 84 268 69 91 48 41 249 258.5 0.5 3.2x10^5 
Sample 
24.3 35 35 42 45 157 93 76 54 57 280 218.5 0.5 2.7x10^5 
Sample 
24.4 43 38 40 48 169 43 39 36 37 155 162 0.5 2.0x10^5 
Sample 
25.1 34 36 44 50 164 50 47 47 45 189 176.5 0.5 2.2x10^5 
Sample 
25.2 32 36 46 35 149 52 50 32 33 167 158 0.5 2.0x10^5 
Sample 
25.3 40 32 40 43 155 31 38 30 39 138 146.5 0.5 1.8x10^5 
Sample 
25.4 23 38 28 31 120 36 54 29 25 144 132 0.5 1.7x10^5 
Sample 
26.1 25 29 49 48 151 49 38 30 29 146 148.5 0.5 1.9x10^5 
Sample 
26.2 28 35 35 38 136 58 52 24 23 157 146.5 0.5 1.8x10^5 
Sample 
26.3 36 34 46 51 167 63 71 36 56 226 196.5 0.5 2.5x10^5 
Sample 
26.4 32 33 32 38 135 30 45 35 32 142 138.5 0.5 1.7x10^5 
Sample 
27.1 54 49 83 80 266 79 85 56 55 275 270.5 0.5 3.4x10^5 
Sample 
27.2 43 41 62 72 218 66 71 44 40 221 219.5 0.5 2.7x10^5 
Sample 
27.3 57 50 91 88 286 95 84 46 77 302 294 0.5 3.7x10^5 
Sample 
27.4 53 47 35 55 190 60 55 38 61 214 202 0.5 2.5x10^5 
Sample 
28.1 32 30 49 38 149 49 45 40 48 182 165.5 0.5 2.1x10^5 
Sample 
28.2 28 30 21 26 105 33 34 36 30 133 119 0.5 1.5x10^5 
Sample 
28.3 35 25 46 49 155 46 39 35 31 151 153 0.5 1.9x10^5 
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Sample 
28.4 37 41 37 41 156 56 50 34 32 172 164 0.5 2.1x10^5 
Sample 
29.1 30 51 39 36 156 34 40 24 34 132 144 0.5 1.8x10^5 
Sample 
29.2 18 30 29 40 117 46 49 22 21 138 127.5 0.5 1.6x10^5 
Sample 
29.3 32 28 49 59 168 83 52 21 31 187 177.5 0.5 2.2x10^5 
Sample 
29.4 21 22 18 17 78 22 17 15 22 76 77 0.5 9.6x10^4 
Sample 
30.1 43 55 62 50 210 54 47 40 58 199 204.5 0.5 2.6x10^5 
Sample 
30.2 44 63 80 59 246 48 57 63 57 225 235.5 0.5 2.9x10^5 
Sample 
30.3 36 50 89 96 271 96 71 42 48 257 264 0.5 3.3x10^5 
Sample 
30.4 47 55 92 111 305 115 110 62 64 351 328 0.5 4.1x10^5 

 
C1-C8: Count 1 – Count 8; D.F.: Dilution factor. 
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APPENDIX C: SINGLE CELL-DERIVED POPULATION GROWTH OF 
UNTREATED AND RECOVERED HCT116 CELLS 
 

HCT116.Untreated	 Day	1	 Day	2	 Day	3	 Day	4	 Day	5	

Sample	1	 1	 2	 5	 5	 6	

Sample	2	 1	 2	 4	 17	 20	

Sample	3	 1	 2	 0	 0	 0	

Sample	4	 1	 0	 0	 0	 0	

Sample	5	 1	 2	 3	 3	 4	

Sample	6	 1	 2	 4	 11	 17	

Sample	7	 1	 2	 1	 2	 0	

Sample	8	 1	 0	 0	 0	 0	

Sample	9	 1	 4	 6	 7	 11	

Sample	10	 1	 1	 4	 8	 16	

Sample	11	 1	 2	 5	 10	 20	

Sample	12	 1	 0	 0	 0	 0	

Sample	13	 1	 2	 4	 8	 10	

Sample	14	 1	 2	 5	 14	 21	

Sample	15	 1	 2	 3	 0	 0	

Sample	16	 1	 1	 1	 0	 0	

Sample	17	 1	 2	 4	 13	 26	

Sample	18	 1	 2	 4	 9	 15	

Sample	19	 1	 2	 8	 17	 37	

Sample	20	 1	 2	 2	 1	 0	

HCT116.Dox	 Day	1	 Day	2	 Day	3	 Day	4	 Day	5	

Sample	1	 1	 3	 4	 7	 9	

Sample	2	 1	 2	 3	 5	 6	

Sample	3	 1	 4	 8	 26	 62	

Sample	4	 1	 2	 8	 15	 20	

Sample	5	 1	 0	 0	 0	 0	

Sample	6	 1	 4	 8	 22	 36	

Sample	7	 1	 2	 7	 18	 32	

Sample	8	 1	 2	 4	 7	 8	

Sample	9	 1	 2	 2	 0	 0	

Sample	10	 1	 0	 0	 0	 0	

Sample	11	 1	 2	 8	 16	 31	

Sample	12	 1	 1	 3	 8	 16	

Sample	13	 1	 0	 0	 0	 0	

Sample	14	 1	 1	 0	 0	 0	
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Sample	15	 1	 2	 9	 14	 21	

Sample	16	 1	 2	 2	 1	 1	

Sample	17	 1	 3	 7	 13	 26	

Sample	18	 1	 3	 8	 25	 50	

Sample	19	 1	 2	 8	 20	 39	

Sample	20	 1	 2	 8	 20	 38	
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Why Imatinib Remains an
Exception of Cancer Research
STEVEN D. HORNE,1 JOSHUA B. STEVENS,1 BATOUL Y. ABDALLAH,1 GUO LIU,1 STEVEN

W. BREMER,1 CHRISTINE J. YE,2,3 AND HENRY H.Q. HENG1,3,4*
1Center for Molecular Medicine and Genetics, Wayne State University School of Medicine, Detroit, Michigan
2Department of Internal Medicine, Wayne State University School of Medicine, Detroit, Michigan
3Karmanos Cancer Institute, Wayne State University School of Medicine, Detroit, Michigan
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The archetype driving the drug targeting approach to cancer therapy is the success of imatinib against chronic phase chronic myeloid
leukemia (CML-CP). Molecular targeting success of this magnitude has yet to be repeated for most solid tumors. To answer why imatinib
remains an exception of cancer research, we summarize key features and patterns of evolution that contrast CML-CP from prostate
cancer, an example of a solid tumor that also shares a signature fusion gene. Distinctive properties of CML-CP include: a large cell
population size that is not geographically constrained, a highly penetrant dominant oncogene that sweeps the entire cell population,
subsequent progressive and ordered clonal genetic changes, and the effectiveness ofmolecular targetingwithin the chronic phase, which is
comparable to the benign phase of solid tumors. CML-CP progression resembles a clonal, stepwise model of evolution, whereas the
pattern of solid tumor evolution is highly dynamic and stochastic. The distinguishing features and evolutionary pattern of CML-CP support
why the success of imatinib does not carry over to most solid tumors. Changing the focus of cancer research from a gene-based view to a
genome-based theory will provide insight into solid tumor evolutionary dynamics.
J. Cell. Physiol. 228: 665–670, 2013. ! 2012 Wiley Periodicals, Inc.

Chronic myeloid leukemia (CML) is a hematological disorder
characterized by uncontrolled proliferation of cells of the
myeloid lineage. CML progresses through three successive
stages. Chronic phase chronic myeloid leukemia (CML-CP) can
last for years, which continues through an accelerated phase en
route to a blast crisis, resembling acute myeloid leukemia or
lymphoid leukemia. Within the blast crisis stage, the patient
survival time is under a year (Assouline and Lipton, 2011).

The Philadelphia chromosome (Ph) was discovered in 1960
followed by its detailed cytogenetic characterization in 1973
(Nowell and Hungerford, 1960; Rowley, 1973). Translocation
of chromosomes 9 and 22 results in the de novo formation of
the BCR-ABL fusion oncogene, a constitutively active form of
the ABL tyrosine kinase. BCR-ABL kinase hyperactivity
enhances proliferation and growth-factor independence while
reducing apoptosis (Jabbour et al., 2010; Zhang and Rowley,
2011). The molecular characterization of CML provided
rationale for studying all cancer at the gene level and has
influenced the entire field.

The mutant BCR-ABL kinase represents a specific cancer
target not sharedwith normal somatic cells, and itwas reasoned
that, if this specific cancer gene could be targeted, the cancer
could be cured. In an effort to inhibit the activity of the BCR-
ABL kinase, a small-molecule compound now referred to as
imatinib was developed (Druker et al., 1996, 2001). Imatinib
blocks the ATP-binding site of BCR-ABL, suppressing kinase
signaling and inducing cell death. The results of imatinib therapy
are impressive for CML-CP patients, with a 7-year overall
survival rate of 86% (Jabbour et al., 2010). Imatinib is currently
the recommended first-line therapeutic for CML-CP patients
and is accepted as the standard of care.

The overwhelming, inspiring success of imatinib has become
the example to follow for cancer research, providing the key
rationale in favor of various cancer genome sequencing
projects. Vast investments in high-throughput genome
sequencing technologies and microarray analyses have resulted
in the identification of many candidate molecular targets.
Unfortunately, molecular targeting success of this magnitude

has yet to be repeated for themajority of solid tumors (Heng et
al., 2010b). Identifying recurrent chromosomal changes has
proven to be extremely challenging in solid tumors due to the
lack of recurrent patterns in most tumor types coupled with a
high level of non-clonal chromosome aberrations (NCCAs) and
karyotypic heterogeneity (Heppner andMiller, 1998; Albertson
et al., 2003; Heng et al., 2004, 2013). The vast majority of gene
mutations are not shared among patients, and overwhelming
mutational heterogeneity can occurwithin a tumor (Bielas et al.,
2006; Heng, 2007; Ye et al., 2007; Navin et al., 2011).
Furthermore, even when a recurrent mutation is present, as in
the case of BRAF mutations in melanoma, the effect of a
targeted drug such as vemurafenib is dramatic but transient, as
tumors invariably become resistant to these agents (Wagle et
al., 2011). To understand why the high success of molecular
targeting against CML-CP has been difficult to duplicate for
most solid tumors, we analyze the following issues.
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Comparative Analyses
Contrasting patterns of evolution

Cancer represents an evolutionary process, where the pattern
has been demonstrated to be highly dynamic and stochastic
(Merlo et al., 2006; Gatenby et al., 2009b, 2010; Gillies et al.,
2012). In particular, solid tumor evolution is cyclical and
consists of two distinct phases: a punctuated phase (marked by
genome replacement coupled with elevated NCCAs) and a
stepwise phase (marked by clonal evolution with dominant
clonal chromosome aberrations or CCAs) (Heng et al.,
2006a,c, 2011a,b; Heng, 2007, 2013) (Box 1). Shifts between
phases are induced by stress and subsequent selection.
Recently, this discontinuous pattern of evolution has been
supported using single-cell sequencing. At the DNA-level,
tumors grow by ‘‘punctuated clonal expansion with few
persistent intermediates’’ (Navin et al., 2011). Even if the
stepwise phase is detected at the DNA level (which represents
the building materials within the genome network), the
punctuated phase may persist at the genome level (which
represents network architecture), as the same building
materials can be utilized to build different structures.
Therefore, the key to monitoring cancer evolution is at the
genome level rather than the gene level (Heng et al., 2011a).

Discovery of the two phases of cancer evolution is of clinical
significance, as specific molecular targeting is most effective
within the stepwise phase of evolution, but less useful in the
punctuated phase where there are no fixed targets. During the
punctuated phase, the genetic landscape of a tumor can
drastically and rapidly change, and alterations of the genome
network can severely impact drug efficacy.

Based on the key clinical characteristics of CML, its
evolutionary pattern resembles the stepwise model of
evolution. In fact, the clonal evolution hypothesis is supported
by the case of CML and has formed the conceptual framework
for current cancer research (Nowell, 1976). Failure of this
applied model in tumors has been a continuous source of
frustration, especially since solid tumors represent 90% of all
malignancies.

The evolutionary process of solid tumors does not fit the
gradual linear pattern observed in CML. Most solid tumors are
marked by the universal existence of genome heterogeneity,
where tumors of the same type often contain unique
karyotypes and mutations found within subclones (Heppner

and Miller, 1998; Heng et al., 2004, 2006a; Losi et al., 2005;
Merlo et al., 2006). High-throughput sequencing has recently
confirmed this (Gerlinger et al., 2012). Therefore, it is
necessary to illustrate the contrasting patterns between clonal
evolution (CML) and stochastic evolution (most solid tumors),
which represent the basis behind the failure of applying the
targeting success of CML-CP to most solid tumors.

It is important to illustrate why CML and other solid tumors
display different patterns of somatic cell evolution. Reviewing
the system features and behaviors of CML-CP and prostate
cancer reveals the following three key evolutionary
characteristics that contrast CML from most solid tumors:
fusion gene dominance, temporal order of karyotypic
evolution, and causation of cancer progression by a highly
penetrant fusion gene. Prostate cancer represents an example
of a solid cancer that is the focus of extensive fusion gene
research (Tomlins et al., 2005, 2008; Rajput et al., 2007; Tu et al.,
2007; Rubin et al., 2011). In particular, the identification of the
fusion gene TMPRSS2-ERG in prostate cancer samples has
reinforced the hope that amolecular Achilles’ heel exists within
every cancer.

Fusion gene dominance

CML is characterized by the high-penetrance of the BCR-ABL
fusion gene. In most instances, the typical t(9;22) is the sole
chromosomal aberration during chronic phase (Johansson
et al., 2002). Prostate cancer cases, however, are marked by
high karyotypic heterogeneity, and specific single fusion genes
occur in reduced frequencies within the patient population.
Dozens of chromosomal abnormalities and fusion genes have
been identified in prostate cancer cases (Gu and Brothman,
2011), suggesting the involvement of large cohorts of genes and
chromosomal aberrations. This is in contrast to the single
fusion gene culprit characteristic of CML-CP. A recent study
demonstrated the presence of the extensively studied fusion
gene TMPRSS2-ERG in only 46% of prostate cancer biopsies
(Mosquera et al., 2009). In fact, after comparing published data
(28 studies totaling 2,786 patient samples, detailed analysis not
shown), the range of TMPRSS2-ERG fusion gene occurrence in
prostate cancer patient samples is approximately 15.3–77.8%,
with a mathematical average of 42.3%. This suggests that even
though fusion genes may be involved in solid tumor
progression, the penetrance of the gene products is very
different from the high frequency found in CML-CP. It is
important to note that, despite the application of large-scale
genome sequencing, commonly shared fusion genes have not
been identified for most solid tumors.

Temporal order of karyotypic evolution

Despite the high level of additional chromosomal changes
detected from themajority of CML patients in blast crisis, along
with variance in the temporal order of secondary changes, the
preferred pathway appears to start with i(17q), followed byþ8
and þPh, and then þ19, suggesting a stepwise pattern of
karyotypic evolution from chronic phase to blast crisis
(Johansson et al., 2002). Corresponding to the karyotypic
changes, the over-expression of the BCR-ABL fusion gene, up-
regulation of the EV11 gene, increased telomerase activity, and
mutation of RB1, TP53, and CDKN2A have been documented.

A distinct common order of karyotypic evolution has not
been characterized in prostate cancer. In contrast, the genomic
rearrangements studied in prostate cancer do not occur in a
predictable fashion. In a recent paired-end, massively parallel
sequencing project of seven prostate cancer patients (Berger
et al., 2011), three of the seven tumor samples sequenced were
positive for TMPRSS2-ERG rearrangements. Interestingly, but
not surprisingly, the sequencing results suggested that
TMPRSS2-ERG rearrangement positivity of each sample was

BOX 1. Select Terminology and Definitions

Term Definition

Genome The entity that contains an organism’s hereditary
information (system inheritance), represented by
both gene context and genomic topology

The topology of the genome provides the physical
basis of genomic architecture and a provides the
physical basis of genomic architecture and
multi-dimensional interactive relationship that exists
between all genes and non-coding sequences

The genome is themain evolutionary selection platform
Punctuated

phase
Phase of NCCA/CCA cycle that is marked by genome

replacement coupled with elevated non-clonal
chromosome aberrations

Stepwise
phase

Phase of NCCA/CCA cycle that is marked by clonal
evolution with clonal chromosome aberrations,
where stepwise Darwinian evolution is dominant

NCCA/CCA
cycle

Highly dynamic and stochastic pattern of solid tumor
evolution

Consists of a punctuated phase and a stepwise phase
Shifts between phases are induced by stress and

subsequent selection
Progression during the punctuated phase cannot be

traced, unlike in the stepwise phase
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the result of a unique pattern of complex chromosome
breakage and rejoining. This supports the discontinuous
pattern of solid tumor evolution (Heng et al., 2006a, 2010a), and
one would expect a large number of possible chromosomal
rearrangement patterns that result in TMPRSS2-ERG
rearrangement-positivity.

Causation of cancer progression by a highly penetrant
fusion gene

The hyperactivity of the BCR-ABL kinase has been deemed the
force driving cells from chronic phase to blast crisis due to its
involvement in enhanced proliferation, growth-factor
independence, reduced adhesion of tumor cells, and reduced
apoptosis. This is supported in mice transgenic for a BCR-ABL
p190 DNA construct (Heisterkamp et al., 1990). Of the 10
transgenic mice generated, 8 died orweremoribundwith acute
or chronic leukemia, myeloid or lymphoblastic, between 10 and
58 days after birth. Two of these were diagnosed in the blast
crisis of CML. In prostate cancer, however, fusion genes have
not been demonstrated as the driving force of disease
progression in vivo. Transgenic overexpression of ERG in mice
resulted in the development of prostatic intraepithelial
neoplasia, but these lesions did not progress to invasive
prostate cancer (Klezovitch et al., 2008; Tomlins et al., 2008).

Population structure of hematologic and solid cancers

A review of population genetics further contrasts hematologic
and solid cancers (Table I). Population size plays an important
role in shaping the evolutionary patterns. Cell populations of
hematological malignancies occupy a large blood environment.
Within this system, initially altered cells can freely move. Any
dominant alteration, such as the appearance of fusion gene
products, would have a significant impact on the entire system.
According to population genetics, clonal events within a large
population can be dominant over non-clonal events (Gerrish
and Lenski, 1998). In contrast, altered cells in solid tissues are
constrained by tissue geography and local micro-environments
are different, unlike the tightly regulated, relatively uniform
blood environment. These altered cells represent typical small,
isolated populations.

Small population size implies that genetic drift has a greater
influence on evolution. Solid tumors, which represent isolated
small populations, mediate their evolution through the NCCA/
CCA cycle (Heng et al., 2006a). NCCAs develop into different
CCAs in different tumors due to the influence of genetic drift.
This principle has also been discussed in regard to the
correlation between dominant mutation types, the size of a
tissue within a cellular compartment, and the size of a stem cell
pool (Frank andNowak, 2004). Tissue compartmentswith large
stem cell pools often incur rapid cellular proliferation caused by
tumor suppressor and oncogene mutation, whereas small stem

cell pools may often initiate cancer progression via genetic
instability (Frank and Nowak, 2004). A direct link between
NCCAs and genomic instability was found after observing
elevated frequencies of NCCAs of various cell lines and animal
models carrying defects in genes responsible for maintaining
genetic diversity (Heng et al., 2006b,c, 2009, 2011a). On the
other hand, CCAs are associated with dominant pathways,
which explains the dominance of fusion genes in the large
population blood cancers and the heterogeneity of aberrations
detected from the small and isolated population solid tumors.
As a result, the evolutionary process of these different isolated
populations is diverse, requiring a longer time to evolve due to
additional system constraint.

Comparing different stages of disease progression

As CML patients progress from the chronic phase into the
accelerated and blast crisis stages, imatinib efficacy plummets.
Complete cytogenetic response in early chronic phase patients
placed on imatinib is approximately 80%. This falls to !8% in
blast crisis (Radich, 2007), where the median survival time is
measured in months (Assouline and Lipton, 2011). This
compares to the efficacy of EGFR targeting in prostate cancer,
as monotherapy agents have failed to demonstrate high
antitumor activity in clinical trials (Canil et al., 2005;Gravis et al.,
2008; Guérin et al., 2010; Sridhar et al., 2010).

The frequency of additional chromosomal abnormalities
increases with progression in CML. This frequency is !7% in
chronic phase patients and jumps to 40–70% in the advanced
stages (Skorski, 2011). These advanced stages of the disease
resemble the majority of solid tumors, where the increase of
genomic instability and accumulation of genetic changes are key
features that are age-related and are responsible for a relatively
longer time period for the cancer to develop and progress. The
linkage between genomic instability and poor prognosis has
been well documented in both hematologic and solid cancer
patients (Nishizaki et al., 2002; Nakamura et al., 2003; Caraway
et al., 2008; Sato et al., 2010; Zamecnikova et al., 2010).

We then suggest that with imatinib, we are actually treating a
stage of CML that is comparable to the benign phase of solid
tumors. Unfortunately, while a dominant CML-CP signature
(BCR-ABL) has been identified with cytogenetic techniques, a
dominant specific fusion gene that drives cancer progression
has yet to be identified in prostatic benign tissue. If a dominant
fusion gene was present in benign tissue that acted as a driving
force in the progression of solid tumors, clinicians could identify
threatening tissues before they became problematic. Similar to
the elimination of chronic phase leukemic cells with imatinib,
extraction of these threatening benign tissues conceptually
would bemuchmore effective than current treatments on late-
stage solid tumors. Unfortunately, this is clearly not the case in
prostate cancer progression.

TABLE I. Evolutionary characteristics of hematologic and solid cancers

Feature Hematological malignancies Solid cancers

Cell population size Large population size Small population size
Cell motility Cells are free to migrate throughout blood environment Cells populations are isolated and constrained by tissue

geography
Genetic drift Lower influence on large populations Greater influence on small populations
Micro-environment Blood stream is tightly regulated and relatively uniform

(glucose and oxygen levels, pH, etc.)
Micro-environments vary widely within and between

tissues
Cell metabolism Influenced by normoxic conditions, regulated nutritional

levels
Varies depending on normoxic/hypoxic conditions and

nutritional gradients
Drug delivery/targeting efficiency Free motility of cells allows for optimal drug targeting Varying environments may affect drug chemistry, sta-

tionary tumor masses of cells potentially hinder drug
targeting and penetration

Cell lineage of disease onset Early lineage displays more defined differentiation and is
characterized by orderly and more predictable stages

Late lineage displays less linear progression and is char-
acterized by stochastic, unpredictable stages
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Conclusions

Molecular targeting success is, unfortunately, very limited in
other cancer types where the evolutionary patterns are
significantly different. While CML-CP clearly represents a
stepwise model, most detectable solid tumors likely have
undergonemultiple rounds of the two-phase cycle of evolution.
The associated genome dynamics make it very difficult to
successfully apply molecular targeting approaches against most
solid tumors. Furthermore, if one particular pathway of a solid
tumor is blocked by a specific therapy, genomic instability can
relieve the requirement for that pathway within the population
of surviving cells. This is evidenced by the demonstration that
drug treatment can induce the recently introduced
phenomenon of genome chaos, where major genome
reorganization is achieved in a short period of time following
chromosome fragmentation (Heng et al., 2006c, 2011b; Stevens
et al., 2007, 2011a). This view is in agreement with the clinical
observations that CML responds to imatinib more effectively
during the chronic phase than during blast crisis where new
karyotypic aberrations are detectable.

Despite attempts to apply molecular targeting principles to
solid tumors, clinical outcomes have been far from ideal.
Metastatic melanoma patients treated with vemurafenib
(targeting the BRAF V600E mutation) for 6 months had a 20%
overall survival increase compared to dacarbazine treatment
(Chapman et al., 2011). However, between the 9- and 10-
month mark, the overall survival trends of these two
treatments appear to converge, suggesting that vemurafenib
may prolong the survival of metastatic melanoma patients by
approximately 2 months. A 4-year study regarding trastuzumab
as part of an adjuvant treatment regimen against HER2-positive
breast cancer concluded that patients treatedwith trastuzumab
for 1 year had an overall survival increase of 1.6% over those
observedwithout treatment (Gianni et al., 2011). Such cases do
not mimic the overwhelming success of imatinib.

Studies of 82 non-small-cell lung cancer (NSCLC) patients
treated with crizotinib targeting the EML4-ALK fusion gene
observed 1- and 2-year overall survival rates of 74% and 54%,
compared to 1- and 2-year overall survival rates of 72% and 36%
of ALK-positive crizotinib-naı̈ve control patients (Kwak et al.,
2010; Shaw et al., 2011). Based on previous data from targeted
therapy trials of other solid tumors, one would expect further
decline in survival as this study continues. A recent meta-
analysis of 13 randomized trials evaluating the effects of
epidermal growth factor receptor (EGFR) tyrosine kinase
inhibitors (erlotinib and gefitinib) in 1,260 patients with EGFR-
mutated NSCLCs concluded that despite a higher response
rate than platinum-based chemotherapy (67.6% vs. 32.8%,
respectively), EGFR tyrosine kinase inhibitors do not
significantly improve the overall survival of patients compared
to control groups (hazard ratio¼ 0.96; Petrelli et al., 2012).
These studies indicate, unfortunately, that the molecular
targeting success against CML-CP has not been replicated in the
clinic against most solid tumors.

Interestingly, treating PML-RARA-positive acute
promyelocytic leukemia (APL) patients with a combination of
arsenic trioxide and all-trans retinoic acid has been very
successful, with a 5-year overall survival rate of 97.4% (Hu et al.,
2009). This is not surprising considering the parallels between
APL and CML-CP where both are typically characterized by a
highly penetrant, dominant fusion gene (PML-RARA is found in
over 98% of APL cases) (Vitoux et al., 2007). In contrast, the
fusion gene EML4-ALK is found in only 4% of NSCLC cases
(Shaw et al., 2011). Like BCR-ABL mouse models, PML-RARA
expression yields APL in transgenic mice (de The and Chen,
2010), demonstrating the direct link between the fusion gene
and the onset of the disease. Both diseases are hematological
malignancies with similar population structures, ultimately

allowing for a dominant alteration (e.g. fusion gene) to have a
significant impact on the entire system. It is therefore likely that
some subtypes of cancer could be effectively treated using
target-specific or even less specific therapy, during the stepwise
phase of cancer evolution, when they have evolutionary
patterns similar to those of CML andAPL.Of course, molecular
targeting can further reduce potential side effects otherwise
associated with harsh, general cellular mechanism-focused
treatment such as chemotherapy.

The application of fusion genes in the diagnosis of solid
tumors also has limited implications due to the inaccessibility of
threatening benign tissues using current sampling techniques. A
simple, accurate, and informative blood draw can be performed
to diagnose patients with BCR-ABL positive chronic phase
leukemia due to the constant circulation of leukemic cells in the
blood stream. However, fusion gene identification in
threatening benign tissue within an asymptomatic individual is
problematic. Current biopsies collect only a small sample of
suspect tissue. Even if the sample contains altered tissue, the
biopsy will not likely indicate the complete genomic profile of
the tumor, given the vast genomic heterogeneity associated
with solid tumors. This is unfortunate because if we could
identify solid tumors in the benign phase, for many cases,
surgical resection would be sufficient even without drug
treatment.

This comparison also sheds light on the concept of oncogene
addiction, where tumor maintenance is dependent on the
constitutive activity of oncogenes, and inhibition of this activity
leads to tumor cell death, differentiation, arrest, or senescence
(Luo et al., 2009). This concept is supported by a BCR-ABL1-
tetracycline transactivator double transgenic mouse study
(Huettner et al., 2000). Reversion of the leukemic phenotype
and complete remission were achieved after suppression of the
BCR-ABL1 gene. However, this concept fails to extend tomost
types of cancer due to the lack of a dominant gene product that
drives cancer progression in early lineages. In addition, any
oncogene addiction can be lost to subsequent rounds of the
NCCA/CCA cycle, resulting in system-wide changes that can
impact target-specific drug resistance without necessarily
resulting in additional mutations to the target gene product.
This explains the loss of oncogene addiction seen in lung cancer,
breast cancer, as well as the blast crisis of CML, despite the
expression of targetable EGFR, HER2, and BCR-ABL,
respectively (Hochhaus et al., 2002; Sharma et al., 2007;
Valabrega et al., 2007). We can confirm that under only very
rare, special circumstances does this model of oncogene
addiction actually apply to cancer.

Imatinib-resistant CML cases have been attributed to point
mutations in the BCR-ABL gene, however, these mutations are
actually found in only a small subset of imatinib-resistant BCR-
ABL CML cases (Deininger et al., 2005). A recent study of the
apoptotic machinery of BCR-ABL-driven leukemia suggested
that the complexity of the disease clearly extends beyond any
point mutations that may occur within the kinase as cases with
higher resistance actually involve additional genomic changes
rather than new kinase point mutations (Kaufmann, 2006). Our
recent study of cell death heterogeneity may explain this
problem. Since the cell death process can also favor cancer
evolution by changing multiple levels of genetic and epigenetic
organization, there are many off-target and adverse effects
(Stevens et al., 2013). Extension of the fusion gene target model
derived fromCML-CP to solid tumors will be ineffective due to
the even greater complexity and heterogeneity within these
diseases, therefore, we can no longer follow CML’s lead in the
design of future cancer research.

What is the new direction we should take in the war against
cancer, since specific molecular targeting has not been an ideal
approach for most solid tumor types due to overwhelming
genome instability in most solid tumors? A new, promising

JOURNAL OF CELLULAR PHYSIOLOGY

668 H O R N E E T A L .



www.manaraa.com

	 100	

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

strategy involves treating cancer progression as system
evolution, where focusing on the overall pattern of system
evolution rather than targeting individual genesmay provide the
answer (Heng et al., 2006a,b,c, 2010a, 2011a; Gatenby et al.,
2009a,b, 2010; Gillies et al., 2012). One established system of
using NCCAs to study karyotypic heterogeneity and monitor
the speed and phases of cancer evolution represents such an
example (Heng et al., 2009; Ye et al., 2009; Stevens et al., 2011b;
Heng, 2012). The key here is to constrain the speed of tumor
growth without triggering genome chaos, which promotes the
emergence of aggressive, drug-resistant tumor subpopulations.
Targeting specific pathways works well only when the system is
stable, during the stepwise phase, however, for unstable
systems, pathway targeting is quickly overcome by the
evolution of the system. Even worse, through genome chaos,
new pathways are selected and constructed, and new genomes
(systems) are rapidly formed. Therefore, drug intervention can,
in fact, paradoxically promote cancer evolution when applied in
the wrong phase (Maley et al., 2004). In contrast, slowing the
evolutionary process by carefully constraining the system
without promoting genome chaos will improve patient
prognosis (Heng, 2013).

The main purpose of our analysis is not just to be critical of
current efforts, nor to offer precise solutions, but to call upon
investigators to actively discuss this important issue, which is
crucial for our future efforts towards winning the war on
cancer. Such action is urgently needed, as there are currently
two opposite viewpoints when dealing with this question. On
one side, is that it is well known that imatinib represents an
exception, but without a clear explanation. Paradoxically, other
researchers believe that, with continued efforts, the success of
imatinib in CML-CP will be duplicated in most solid tumors.
With this evolutionary analysis, we hope that we have done the
first key step by challenging the research community to face this
reality and adopt a new understanding of cancer. With the
correct conceptual framework, we can make the next triumph
of cancer research (Heng, 2007, 2012, 2013; Heng et al.,
2011a,b).
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The basis for the gene mutation theory of cancer that dominates current molecular cancer research consists of: the belief that

gene-level aberrations such as mutations are the main cause of cancers, the concept that stepwise gene mutation accumula-

tion drives cancer progression, and the hallmarks of cancer. The research community swiftly embraced the hallmarks of can-

cer, as such synthesis has supported the notions that common cancer genes are responsible for the majority of cancers and

the complexity of cancer can be dissected into simplified molecular principles. The gene/pathway classification based on indi-

vidual hallmarks provides explanation for the large number of diverse gene mutations, which is in contrast to the original esti-

mation that only a handful of gene mutations would be discovered. Further, these hallmarks have been highly influential as

they also provide the rationale and research direction for continued gene-based cancer research. While the molecular knowl-

edge of these hallmarks is drastically increasing, the clinical implication remains limited, as cancer dynamics cannot be sum-

marized by a few isolated/fixed molecular principles. Furthermore, the highly heterogeneous genetic signature of cancers,

including massive stochastic genome alterations, challenges the utility of continuously studying each individual gene mutation

under the framework of these hallmarks. It is therefore necessary to re-evaluate the concept of cancer hallmarks through the

lens of cancer evolution. In this analysis, the evolutionary basis for the hallmarks of cancer will be discussed and the evolu-

tionary mechanism of cancer suggested by the genome theory will be employed to unify the diverse molecular mechanisms of

cancer.

The Significance and Limitations of Using the
Hallmarks of Cancer to Understand the Complexity
of Cancer
The majority of current cancer research is based on the gene-
centric view, which promotes the identification of shared
gene mutations in cancer cells as well as focuses on distin-
guishing individual molecular pathways responsible for the
initiation and progression of the disease. Hundreds of cancer
genes have been identified as a result of decades of research,
and the characterization of these genes has generated large
numbers of hypotheses and publications. However, synthesis
of these diverse and often conflicting molecular data has
been a challenge.1,2 The large number of identified cancer
gene mutations has significantly surpassed the original pre-
diction of the gene mutation theory that there should be only

a limited number of key cancer gene mutations.3 To under-
stand the common biological basis for this substantial num-
ber of gene mutations and to reconcile the inconsistencies
between theoretical prediction and clinical fact, various bio-
logical capabilities and enabling characteristics of cancer that
are believed to facilitate tumor growth and metastasis have
been summarized in order to categorize all cancer genes and
their molecular contributions to cancer. These distinctive fea-
tures, termed hallmarks, were concisely explained as the six
common traits that direct the transformation of normal cells
to malignant cells. They include growth stimulation, evasion
of growth suppressors, resistance of apoptosis, replicative
immortality, induction of angiogenesis, and activation of
invasion and metastasis.4 This synthesis was immediately
accepted by the research community with great enthusiasm,
reflected by an extremely high number of citations, as it not
only provides the rationale for the search of more cancer
genes but also points to the direction of where to look for
them. Recently, abnormal metabolic pathways and evasion of
the immune system were added to the list of hallmarks, along
with the enabling characteristics of genome instability and
tumor-promoting inflammation.5 In short, cancer cells are
thought to emerge as the result of the accumulation of
defects in the control mechanisms of cell division and regula-
tory feedback systems. These mechanisms are controlled by
specific genes and pathways. One example is the TP53 tumor
suppressor protein that normally triggers cell death in
response to DNA damage. A mutation of the gene would
inhibit its monitoring capabilities of the apoptosis-inducing
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circuitry and enable cancerous cells containing damaged
DNA to resist programmed cell death.5 Thus, the complexity
of cancer is simplified into a short list of underlying princi-
ples that can be effectively explained by key cancer gene
mutations or genetic network interactions. Coupled with the
general concept that cancer progression follows stepwise, clo-
nal evolution driven by several of these key mutations,5–7 and
the established relationship between gene mutation and cau-
sality of cancer in experimental settings, the hallmarks of
cancer have further cemented the gene mutation theory of
cancer.

With these accepted frameworks, cancer research should
be straightforward. Identifying gene mutations responsible for
these hallmarks should establish the molecular mechanism of
cancer, and the next logical step would be application of this
mechanism both in diagnostic and treatment regimens. How-
ever, the reality of cancer is far more complicated, and too
many implications that are based on studying these hallmarks
have failed in the clinic. It is now time to re-examine the
concept of the cancer hallmark itself.

Indeed, there are conceptual challenges to the hallmarks
of cancer. First, both the number of hallmarks and identified
gene mutations are expanding. On one hand, there are a
large total number of genes that can be linked to these hall-
marks. In particular, due to the current cancer genome
sequencing project, the list of cancer gene mutations has
grown rapidly, making the hallmark concept less clinically
relevant. On the other hand, to make the most sense of these
newly identified gene mutations, the list of hallmarks must
also increase, as the majority of gene mutations cannot be
explained by the current hallmarks. Surely, the number of
hallmarks has increased from six to ten (since these enabling
characteristics of genomic instability and tumor-promoting
inflammation are hallmarks, and in fact, genomic instability
perhaps is the most important hallmark both for cellular het-
erogeneity and unifying other hallmarks.). Furthermore, as
human behavior and environmental setting are associated
with survival rate of cancer patients, these types of higher-
level system constraints will likely increase the number of
hallmarks. Further, more specific mechanisms linked to can-
cer such as viral infection (e.g. human papillomavirus) would
also qualify as additional hallmarks. For complex systems,
small increases of the number of involved agents will lead to
huge complications.

This raises some important questions. At which point
does the list become comprehensive, where no additional
hallmarks are necessary? Which hallmarks are more impor-
tant than others (i.e. the hallmark of the hallmarks)? How do
we prioritize these hallmarks in the clinic (i.e. which do we
target first)? If each hallmark of this long list holds equal
importance, the rationale of establishing the hallmarks in the
first place would be lost. Even though the importance of each
hallmark is not formally discussed in the literature, many
researchers assume these hallmarks are more or less equally
important. No one has even admitted that the hallmark they

are studying is less important. Quite the opposite, everyone
would consider the hallmark they study the most important.
Therefore, this issue needs to be discussed, as there are many
conflicts among hallmarks.

Second, there is a high degree of overlap and dynamics
for these hallmarks. A hallmark may require additional hall-
marks, for example metastasis incorporates cell death, prolif-
eration, inflammation, metabolism, and avoiding immune
destruction.8,9 In addition, the same gene can be involved in
different hallmarks. Mutant RAS and upregulated MYC play
roles in energy metabolism, proliferative signaling, angiogene-
sis, invasion, and survival.5,10–14 Regulation of the well-
characterized metastatic suppressor KISS1 has also been
linked to tumor metabolism, affecting glycolysis, mitochon-
drial biogenesis, and lipid homeostasis.8 Telomerase and its
protein subunit TERT, commonly associated with elongation
and maintenance of telomeric DNA, exert telomere-
independent functions including enhancement of cell prolif-
eration and/or resistance to apoptosis, involvement in DNA
damage repair and RNA-dependent RNA polymerase func-
tion, and amplifying signaling of the WNT pathway by serv-
ing as a cofactor of the b-catenin/LEF transcription factor
complex.5,15–19 This overlap makes the combinational func-
tion of many genes and gene mutations difficult to predict. If
a tumor generates its own proliferative signal, but still
responds to antigrowth and cell death signaling, how does
the cell population respond? Furthermore, not only can the
hallmarks conflict with each other, but even the same hall-
mark can be either beneficial or harmful for a given cancer
within the changed evolutionary landscape. For example, the
process of effective cell death can eliminate most cancer cells,
but also can accelerate cancer evolution by promoting
outlier-driven repopulation, resulting in a more aggressive
phenotype (Horne et al., unpublished observations).

Third, it is also important to note that the hallmarks of
cancer are not all unique to malignant tumors. When com-
paring malignant and benign tumors, only one of the six
original hallmarks, tissue invasion and metastasis, is not
shared by both.20 Thus, it appears less than ideal to continue
placing all ten, supposedly distinctive capabilities on par with
each other, blurring the lines between the designation of
benign tumors and cancer.

Fourth, many linkages established between gene muta-
tions and these hallmarks have been based on experimental
systems where average profiling of cell populations was per-
formed.20 Since molecular averaging methods artificially
“wash away” cellular heterogeneity (either by using more
homogenous cell lines or by specifically profiling the domi-
nant populations by ignoring large portions of cells that
exhibit non-clonal changes), it is much easier to establish a
specific “average linkage.” In addition, much molecular
characterization of individual hallmarks is focused on spe-
cific linear pathways. Unfortunately, tumors generated in
the laboratory setting within artificial conditions, usually
driven by dominant, linear pathways, differ from those in
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patients that have undergone decades of evolution. This
explains why many conclusions do not truly reflect a “real
world” cancer cell population where the heterogeneity and
complexity rule. It was recently demonstrated that, in most
cancer cell populations that exhibit unstable genomes, there
is no average profile.21 For a given cell population, it will
often display different types of hallmarks. Importantly,
many hallmarks represent population-level emergent behav-
iors, such as angiogenesis, and therefore may not be dis-
sected down to individual cell-based explanations. Recently,
some criticism has focused on the hallmarks concept, in
particular by linking hallmarks to cell culture artifacts in
addition to the overall framework.22

Fifth, understanding the molecular basis of these hall-
marks and identifying genes for each hallmark has limited
clinical relevance. While it is well known that inflamma-
tion represents a new hallmark, a recent clinical study
showed that inflammation status is associated with reduced
risk of prostate cancer.23 A similar limitation is best illus-
trated in cancer treatment. While most of the molecular
targets are well-characterized, in real tumors, they quickly
become moving targets under medical treatments, espe-
cially when the treatment pressure is high, rapid and mas-
sive genome reorganization (termed genome chaos) occurs,
which can drastically change dominating pathways.24–26

Interestingly, mathematical and evolutionary modeling
have supported that therapeutic intervention can provide
selective pressure for the expansion of resistant var-
iants,27,28 and treatment has been proposed to accelerate
cancer genome evolution and tumor progression.29 This
would suggest that, regardless of which hallmark is tar-
geted, the cancer adapts and persists. While the gene
theory has been the foundation of a sizable quantity of
experimental findings and molecular progress, there is a
huge gap between understanding how a molecular mecha-
nism potentially contributes to cancer and how cancer
occurs in reality, and whether it is practical to apply that
knowledge in the clinic. For example, this gap becomes
highly significant as physicians aim to increase patient sur-
vival and reduce tumor cell burdens, while researchers are
focused on identifying molecular mechanisms based on
simplified models. Clearly, just focusing on individual hall-
marks is not going to offer realistic understanding and
treatment options for most cancers. The truth is many
individual hallmarks represent emergent properties, which
are difficult to directly link to genetic parts, or individual
cells, or even subpopulations (Table 1).30,31

Lastly, the hallmark concept seemed to have rationalized
and energized the field of cancer research, comforted
researchers20 and suggested the importance of focusing on
cancer phenotypes. It in fact failed to address the fundamen-
tal issue of the dynamic relationship among cancer pheno-
types throughout the evolutionary process, as cancer cells are
constantly evolving and the effort to dissect the highly
dynamic phenotypical package into individual molecular

principles often ignores the evolutionary context. For exam-
ple, the concept helps to understand why many gene muta-
tions can potentially contribute to cancer by linking them to
individual hallmarks, but did not explain their underlying
evolutionary mechanism, nor provide the framework to
understand why there are so many mutations detected yet
the prediction power of an individual gene mutation is low
in the clinic. Furthermore, they failed to appreciate the ulti-
mate importance of the genome’s stochastic dynamics and
the genome’s role to organize gene mutations and serve as a
package for macro-cellular evolutionary selection as well as
the dynamic competition and collaboration within cellular
populations. Obviously, if there were a small number of can-
cer gene mutations like the previous prediction of less than a
handful, cancer cell populations were homogeneous, and if
each hallmark were truly independent from each other, then
the established linkage between cancer genes and hallmarks
would be highly significant. However, as illustrated by the
current cancer genome sequencing project, there are so many
gene/epigene mutations/alterations, the cancer genetic land-
scape is highly diverse, and there is no one-to-one relation-
ship between gene mutations and hallmarks. Thus, ongoing
efforts to link each newly identified gene mutation to these
hallmarks might be useful for publication purposes or con-
vincing funding agencies, but offer limited clinically useful
information. More significantly, the hallmark concept is not a
theory of cancer, and it does not provide the theoretical
understanding of how and why we get cancer.

To address these issues, a unified or general theory is
urgently needed,43,44 which represents the common mecha-
nism behind the hallmarks of cancer and provides the expla-
nation for the large number of diverse genetic and epigenetic
alterations observed. Since cancer represents a typical evolu-
tionary process,7,35,42,45 it is logical to apply evolutionary
theory to achieve this goal. One such framework that takes a
systematic approach and can rectify these disparities is the
genome theory of cancer evolution. During the revision of
this mini-review, Dr. Robert Weinberg published his candid
analysis of current cancer research, and despite the knowl-
edge of the hallmarks and their molecular understandings, he
clearly admitted that there is no correct framework of cancer
research.46 Thus, the original idea of searching for this frame-
work by molecular principles is not working. Interestingly,
the authors of the cancer hallmark concept did not even
anticipate that this would become so popular, perhaps due to
some of the above concerns!

Genome Theory of Cancer Evolution Offers a Genome
System Approach and Unifies the Hallmarks of
Cancer
The genome theory of cancer evolution was introduced to
establish a new theoretical basis of current cancer research
(Table 2). At the center of this theory is the redefinition of
the genome and its relationship with genes in the contexts of
genetic inheritance and somatic cell evolution. There are an

M
in
i
R
ev
ie
w

2014 Hallmarks of cancer

Int. J. Cancer: 136, 2012–2021 (2015) VC 2014 UICC



www.manaraa.com

	 105	

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

increasing number of diseases that have been linked to the
concept of evolutionary adaptation at the somatic cell
level.9,40 It is thus timely to illustrate how somatic cell evolu-
tion works. Using the genomic-evolutionary perspective, can-
cer is described as a genome system-level disease displaying
altered genomes coupled with increased heterogeneity and
other genetic and phenotypic complexities. In other words,
cancer evolution can be understood as a series of genome-
mediated system replacement involving dynamic cycles of
NCCAs and CCAs occurring within two evolutionary phases
(punctuated and stepwise) (Tables 1 and 2, Fig. 1).24,25 The
transition of two phases of somatic cell evolution is linked to
stress response, system instability, genome-mediated system
replacement coupled with diverse phenotypes and how evolu-
tion occurs. Together with the evolutionary mechanism of
cancer, it offers explanations to many previous puzzling

issues, such as (i) why there is elevated genome alteration in
the first place. It turns out, in addition to errors from the
mitotic process, lower levels of stochastic genome alterations
can provide an adaptive advantage in response to stress and/
or functional compensation, and they can also initiate further
destabilization of the genome and serve as the driving force
of cancer evolution as a trade-off;9,33,47,48 and (ii) why it is so
common for cancer cells to utilize the genome-level alteration
during evolution. The genome serves as the selective entity
and platform for gene interaction, which is much more
powerful than individual gene mutations. One way cells can
acquire such massive genome alterations, is through a phe-
nomenon termed genome chaos,25,26,49,50 also referred to as
chromoplexy and chromothripsis.37,38 This process, driven by
both internal and external stressors, occurs within the punc-
tuated phase and contributes to the diversity necessary for

Table 1. Explanations of key terminologies

Clonal and non-clonal chromosome aberrations:

Current cytogenetics defines a clonal chromosome aberration (CCA) as a given chromosome aberration which can be detected at least
twice within 20 to 40 mitotic figures, while a non-clonal chromosome aberration (NCCA) is observed at a frequency less than 4% (less
than 2 in 50 mitotic cells examined).32 Researchers focus on CCAs and dismiss NCCAs. The function of NCCAs has recently been revis-
ited based on its linkage with genome instability.9,32–34 NCCAs/CCAs represent the evolutionary trade-off between survival and prolifera-
tion. The potential confusion comes from the complicated relationship between linkage and gene/genome concept. The term “clonal”
has two meanings: lineage and identity (or similarity). Although a clear lineage may be determined based on historical information and/
or short sequences of DNA, it does not mean that the cells share the same genome. For example, parental and daughter cells are con-
nected by lineage, but in most cancers, parental and daughter cells often display different genome identities. In contrast to the tradi-
tional assumption that genome-level change would be passed on to the daughter cells if the cell divides, for these cells with unstable
genomes, parental cells cannot pass on the same genome.25,32,35,36 This leads to the unique feature of the cancer cell population,
where an entire cell population can display different types of genomes.

Punctuated and stepwise somatic cell evolution:

Punctuated and stepwise evolution initially referred to the karyotype pattern observed in an immortalization model where both non-
clonal and clonal expansion were detected.33 Now, these concepts also apply to the DNA level, as sequencing efforts have recently con-
firmed these evolutionary phases in cancer progression.37–39 Different from clonal diversification, there are massive infrequent chromo-
somal aberrations within the punctuated phase leading to stochastic genome re-organization, interrupting the inheritance of karyotypes
between mother and daughter cells. In the clonal phase, however, the majority of cells are clonal across generations with traceable
karyotype diversification. Punctuated equilibrium was proposed to explain why most species exhibit minimal net evolutionary change
(phenotype) for most of their geological history, and significant evolutionary changes occur rarely and rapidly (on a geologic time scale).
We borrowed the term punctuated to describe the rapid and drastic genome-level changes in contrast to stepwise evolution where the
same genome is maintained coupled with possible gene mutation accumulation. As illustrated in Figure 1, we use “punctuated phase”
to distinguish from the gene-mediated clonal expansion and diversification phase.32–34,40

Macro-cellular evolution and micro-cellular evolution:

Macro-cellular evolution refers to karyotype change-mediated somatic cell evolution, whereas micro-cellular evolution refers to gene/epi-
gene change-mediated evolution where the karyotype remains the same. Macroevolution and microevolution respectively refer to the
organismal evolution at the above-species level or at the population level within a species. To distinguish the cancer evolutionary pro-
cess based on the contribution of genome or gene, and punctuated or stepwise pattern, we use macro- and micro-cellular evolu-
tion.25,33,35,41 In the concept of species, individuals share the same karyotype. For individual cancer cells, they can or cannot share the
same karyotype. In addition, macro-cellular evolution represents system replacement while micro-cellular evolution represents the modi-
fication of the genome-defined system.

Multiple levels of emergent properties:

Since cancer is a disease of tissue and higher-level organization rather individual cells alone, the multiple levels of emergent properties
refer to the non-deterministic relationship between higher-level system order and interaction among lower-level components. At the indi-
vidual cell level, self-organization is based on the genome. At the cell population level, there is no simple average property due to the
heterogeneity of the cell population. At the microenvironmental interaction level, large numbers of cell populations of distinct cell types
will be involved. It is extremely hard to treat this dynamic disease using isolated phenotypes. To explain these emergent properties, we
recently have identified yet another new type of inheritance, inherited heterogeneity, to explain how heterogeneity emerges. It is likely
that self-organization and evolution are two very powerful interactive forces that shape the bio-system, and evolution plays an important
role to select and maintain potential emergent properties.42
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key transitions of cancer.24 Recently, cancer genome sequenc-
ing has forcefully confirmed both the concept of punctuated
cancer evolution and the importance of genome chaos.37–
39,51,52

In order to apply the genome theory to unify the hall-
marks of cancer, one needs to understand more about the
hallmarks. What are the relationships among these hallmarks,
and what is the common basis for these hallmarks? While
each hallmark needs extensive molecular description, funda-
mentally, they all simply represent “difference” between nor-
mal and cancer cells/tissues when viewed through the lens of
somatic cell evolution.

On the surface, it seems essential to identify key differen-
ces specific to cancer so that they can be differentially tar-
geted. However, the fact that so many different genes or even
the same genes can contribute or not contribute to these dif-
ferences or even switch from their main function (depending
on genomic and environmental contexts) makes applying
them in therapeutics extremely difficult. Increased evidence
fully supports our prediction. For example, recent experi-
ments in mouse tumor models have revealed tumor-
suppressing effects of genes previously classified as onco-
genic.53 In a previous study, co-expression of CDK4 and a
Ras mutant in human epidermal keratinocytes resulted in the
abilities to form colonies in soft agar and to develop invasive
tumors in mice;54 however, this co-expression was not found
to support unlimited growth in culture. An increased hTERT
protein level was observed in the xenograft tumor but not in
the cells from culture, supporting that factor(s) from the host
mouse resulted in induction of hTERT and supported contin-
uous proliferation, while challenging the basic concept of
tumor biology that specific gene combinations are able to
immortalize primary human cells.55 Therefore, even if we
could identify and classify the molecular mechanisms under-
lying these differences for an individual patient, this knowl-
edge would have limited clinical significance, as it would only

represent transient probabilities. Within the context of
genome instability and tumor cell population dynamics, one
would also anticipate conflicting effects (e.g. cell death, cell
proliferation, no effect, adverse effect) among cells during
treatment regimens as a result of targeting specific hallmark
characteristics.56,57

Therefore, due to evolutionary dynamics, tracing a key
feature is challenging as specific features may come and go
during evolution, and the initial key factors might or might
not play a role in the future. Perhaps the approach of dissect-
ing the system into the simplest terms does not work well in
highly dynamic situations such as cancer evolution where
genome heterogeneity rules. Multiple level landscape models
illustrate this principle well, where there are so many path-
ways that can achieve fitness, and it is therefore challenging
to predict specific pathways.9,24,58

Paradoxically, the seemingly complex relationship between
hallmarks can be easily unified or understood by using the
evolutionary framework of cancer. First, such framework is
based on the cancer evolution principle, the most fundamen-
tal understanding of cancer. It takes chromosomal instability
(CIN) into serious consideration, as the genome carried
inheritance (or system inheritance) is a key component for
somatic cell evolution.24,42,47 Despite that CIN has received
less attention in the hallmark papers, cancer cell phenotypic
variation, tumor heterogeneity, and cancer evolution have
been attributed to CIN,59–62 and this key feature can be
linked to all of the hallmarks. We have shown that elevated
levels of genome alterations are common in preneoplastic
stages both in vitro and in vivo63 and highly associated with
key stages of cancer stage transition (immortalization, trans-
formation, metastasis, and drug resistance). CIN has been
demonstrated to be the result of a wide variety of stresses
including oncogene activity, infection and immune response,
and temperature and metabolic change.9,35,49 The hallmarks
of cancer themselves provide additional stress to the system,

Table 2. Brief summary of the genome theory of cancer evolution

(i) The genome is not just the collection of an organism’s DNA. The genome organizes the interactive relationship among genes (of the
same chromosome and among different chromosomes). The same or similar genes can form different genomes by re-organizing the
genomic topology via karyotypic alteration.24,42

(ii) Genomic topology defines the genetic network structure. The genome rather than individual genes defines the “system inheritance,”
while individual genes only provide “parts inheritance.”9,42 The genetic blueprint is about the gene relationships rather than specific
genes, as a cell has so many genes that provide sufficient complexity.

(iii) Since the genome represents the highest level of genetic organization, its alteration often has a much larger effect than individual
gene alteration does. Despite that chromosome changes can impact on hundreds or thousands of genes, an altered karyotype ensures
new emergent properties. Rearrangement of the genome can change overall genomic information patterns without generating aberra-
tions in specific cancer genes.

(iv) The relationship among gene mutations, epigenetic changes, and genome changes can be illustrated by the multiple level landscape
model where local landscape represents gene/epigene status and global landscape represents the status of genome replacement. Fun-
damentally, the impact of lower levels of alteration (which modify the system) needs to reach to higher-level change to create new sys-
tems. Thus the evolutionary mechanism of cancer can be explained by the collection of all molecular mechanisms.35

(v) Cancer evolution can be described as two phases of evolution33 (see Table 1). The key for cancer to become successful by overcoming
all levels of constraint is to generate heterogeneity and differ from normal cells. This is most effectively accomplished through genome
instability-mediated genome re-organization (including genome chaos).26
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such as uncontrolled cell growth resulting in tissue and organ
stress, suggesting that the hallmarks of cancer also contribute
to overall CIN in a stochastic fashion. The consequences of
stress-induced CIN, regardless of the different molecular
mechanisms that may be sources of stress at a particular
time, are genomic variation, breakdown of system constraints
and homeostasis, and increased evolutionary potential of the
disease (Fig. 2). Therefore, CIN-mediated genome reorganiza-
tion acts as a major means for cellular heterogeneity and can-
cer evolution by increasing evolutionary potential and
robustness of the disease.9

Second, evolution always uses what is available at any
given moment rather than waiting for a specific feature.
There are many potential features that can be selected, and
the selection force constantly changes, as reflected by the
high levels of genome alteration. With tumor cell population
sizes of 109 to 1012 cells, and the CIN rate of approximately
1026 per cell, per division, every region of the genome should
acquire amplifications and deletions every cell generation.
Thus, tumors can rapidly test all possible mutations for fit-
ness benefits, especially when utilizing genome chaos, which
allows for higher-level, massive genomic reorganization and
new system formation. Fortunately for cancer and unfortu-
nately for patients, NCCAs often exist within cell populations
that are suitable for evolutionary selection.

Third, it is highly unlikely that future changes can be
predicted based on historical changes when there are many

combinations of pathways and genome/environmental inter-
actions that define the biological meaning of gene mutations
and pathways. Because of this, genome instability becomes
the most important hallmark of cancer, as it can be linked to
any of the individual hallmarks and serves as the basis for
generating huge numbers of potential packages ready for evo-
lutionary selection, regardless of which hallmark is actually
selected from which case or at what stage. While the status
of the genome is mentioned as an important characteristic of
cancer in light of the hallmarks, attention continues to
remain focused on mutations in caretaker genes of the
genome that are believed to ultimately drive tumor progres-
sion.5 Since the general causative mechanism of evolution is
heritable heterogeneity and the selection process, no single
molecular mechanism can explain any cancer until they are
unified with the evolutionary mechanisms. Recently, tran-
scriptome dynamics have also been linked to evolutionary
potential through genome chaos.64,65 In addition, models
have illustrated how genome dynamics can alter the tran-
scriptome, leading to new evolutionary potential.65,66 Thus, it
is sufficient to use the evolutionary mechanism to understand
cancer and use the degree of genome instability to monitor
the dynamics of evolution. In contrast, focusing on specific
individual molecular mechanisms will not work for highly
dynamic cellular populations, where pathway switching,
genome system replacement, and new genome system selec-
tion are constantly occurring. Obviously, a holistic and/or
ecological approach (such as measuring the NCCA/CCA
index or measuring the diversity itself) that focuses on moni-
toring overall levels of population system stability/instability,
genomic heterogeneity, and evolutionary potential are more
useful than monitoring just one or a few specific features
when there are high levels of dynamics involved. Again, such
explanation can be illustrated using adaptive multiple level
landscape models.31,58 Further, the hallmarks of cancer have
recently been categorized as proliferation and survival
phenotypes.67

Based on the current knowledge of the genome and the
hallmarks of cancer, the gap between the conceptual under-
standing and clinical applicability of these biological princi-
ples and molecular pathways can be remedied by the new
approach of the genome theory. The first step is establishing
the prevailing principle that unifies the hallmarks of cancer,
which the genome theory identifies as the stochastic genome
variation of macro-cellular evolution within the punctuated
phase. While each molecular mechanism can serve as a sys-
tem stress and other factors such as genetic and epigenetic
variations as well as environmental influences play a role in
cancer progression, the commonality between them is the
presence of system-level dynamics, reflected by stochastic
genome variations, which ultimately create new genetic net-
works.1 Furthermore, the stochastic model of evolution helps
to explain the clinically observed phenomenon that each
tumor is different when comparing cancer cell samples.25

While cancer cells may share similar phenotypes, the genetic

Figure 1. Stochastic model of cancer evolution. Cancer evolution is
divided into two distinct evolutionary phases, the punctuated sto-
chastic phase and the stepwise gradual phase. Punctuated phases
are marked by extreme heterogeneity and rapid genome changes,
represented by genome system changes over time, with each
shape representing a unique genome. The punctuated phase is
caused by system instability-mediated macro-cellular evolution.
Following selection pressure, a unique genome system survives
(circle). In contrast to genomes in the punctuated phase, this new
genome system in the stepwise phase remains relatively stable
over time, although it does acquire low-level change (represented
by pie piece change) such as gene mutations, epigenetic altera-
tions, and small traceable genome-level alterations that aide in
adaptation. This lower-level genetic diversification refers to micro-
cellular changes, which can be classified into clonal expansion
and diversification. Thus, the stepwise phase is mainly associated
with system stability and micro-cellular evolution. Only one run of
the NCCA/CCA cycle is presented.
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route taken to get there is likely to be unique and driven by
evolutionary opportunity, resulting in dissimilar tumors at
the genetic level.68 This model also sheds light on the failure
to translate gene-directed linear processes derived from clonal
model system utilization and experimentation to the clinical
reality of overwhelming primary tumor heterogeneity. Thus,
the genome theory can provide direction as a comprehensive
approach that accounts for the multiple mechanisms involved
in the hallmarks of cancer by equating the evolutionary
mechanism to the sum of all of the individual mechanisms.
This relationship is consistent with the fact that each molecu-
lar mechanism can contribute to cancer yet there is not one
presiding mechanism found across all cases. Therefore, path-
ways must be considered collectively within the context of
the entire system. The evolutionary mechanism of cancer
also accounts for the diverse genetic and epigenetic altera-
tions and acknowledges that cancer, with the help of these
hallmark principles, is ultimately achieved through multiple
cycles of macro-cellular evolution that are stochastically
determined.25

Clinical Implications
It is now clear that the effort to link individual gene muta-
tions to the hallmarks offers limited clinical value, as in con-
trast to the data from basic research efforts based on linear
models, there is no common molecular basis leading to can-
cer evolution in general. By analyzing each tumor, we can

illustrate only end stage dominant mechanisms. The real
challenge lies in predicting tumor response and progression,
similar to how we can comprehensively analyze an historical
event, but it is difficult to translate that information towards
making predictions for the future. Examples of the shortcom-
ings of applying linear model logic in treatment have
extended beyond direct cancer gene targeting. For example,
recent efforts have focused on targeting stromal cells and
manipulating the tumor microenvironment (e.g. antiangio-
genesis therapy). The rationale behind this approach is to
stop tumor blood supply, thus killing the tumor. This
approach has shown high promise in animal models; how-
ever, it has been much less successful in the clinic, as rapid
onset of resistance occurs despite the targeting of endothelial
cells rather than cancer cells.56,69 Even more troublesome,
integrin inhibitors can paradoxically promote tumor angio-
genesis and enhance tumor growth, despite that integrin
inhibitors block integrin action and the angiogenesis process
in tumor models.56,70

Another recent approach involves focusing on the epige-
netic level, as DNA methylation and histone modification
have a profound effect on the epigenetic regulation of gene
expression, and these processes could serve as therapeutic
targets. Unfortunately, early attempts of using DNA methyl-
transferase inhibitors have generated mixed results from dif-
ferent model systems. Strong demethylation was also linked
to genome instability.56,71 Similarly, histone deacetylase

Figure 2. Diagram depicting the impact of stress-induced chromosomal instability in the context of genome-mediated cancer evolution. Differ-
ent chromosomes of the genome are designated by color (blue, yellow, red). The hallmarks of cancer (shown surrounding the chromosomes,
hallmark symbols derived from Ref. 5) can serve as sources of stress to the genome as represented by lightning bolts, resulting in rapid, sto-
chastic genome fragmentation and genome topology reorganization. The consequences of this process are increased karyotypic heterogeneity
and evolutionary potential, as shown by numerical aberrations (e.g. aneuploidy) and/or structural aberrations (e.g. translocations). Breakdown
of system constraints and alteration of genome topology result in phenotypic variance, as represented by different highlighted hallmark combi-
nations for each genome system. Stable karyotypes that survive this process are selected for clonal expansion, and this process cycles upon
future internal/external crisis events. [Color figure can be viewed in the online issue, which is available at wileyonlinelibrary.com.]
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inhibitors have been applied to cancer treatments, and the
results have not been that promising as their efficacy is lim-
ited and, in addition, these inhibitors could also promote
tumor growth.56,72 These mixed findings, from an evolution-
ary perspective, can be easily clarified. According to the evo-
lutionary mechanism of cancer, significant stress (direct or
indirect) will result in increased system dynamics, generating
genome level heterogeneity necessary for cancer cell evolu-
tion. This increased diversity gives the disease a chance to
survive when the evolutionary landscape changes as a result
of clinical intervention, for example. Therefore, the outcomes
are highly unpredictable. While specific molecular targeting
may be an ideal strategy in a stable system, it is not a reason-
able approach for an unstable, evolving system that is charac-
terized by an unlimited number of potential pathways and
dynamic changes to the transcriptome as a result of genome
system alteration.9,64,65,73 Therefore, to achieve a clinically
relevant understanding, we must utilize approaches that
account for inter and intra-tumoral heterogeneity in cancer.74

Such unpredictability can be most obvious when dealing
with treatment. As previously demonstrated, high doses of
chemotherapeutics intended for high rates of tumor cell
death that are commonly prescribed to patients can trigger
chaotic genome formation and rapid changes of genome sys-
tems, which may lead to rapid emergence of an aggressive,
drug-resistant tumor subpopulation.24–26,57,73 Thus, the
genome theory calls into question the current standard proto-
cols of chemotherapy, as drug intervention could paradoxi-
cally promote cancer evolution when applied in the wrong
phase.75,76 Therapeutic strategies should include the aim to
reduce system stress to avoid triggering fast cancer evolution.

Conclusions and Future Perspective
The intent of this analysis is not to downplay the initial
importance of studying the molecular linkage between hall-
marks of cancer and molecular principles, but rather to place
the utility of these hallmarks in the true perspective of cancer
evolution, encourage researchers to realize the limitations of
this concept, and call for new frameworks.

This new framework, the evolutionary mechanism of can-
cer, not only can integrate diverse components such as hall-
marks into the dynamic process of cancer evolution, but also
unify and even simplify our understanding.31 The evolution-
ary mechanism of cancer consists of three key components:
(i) system stress (biological process itself including metabolic
dynamics, aging, bio-system errors, environmental challenges,
cellular adaptive processes), (ii) population diversity (at phe-
notype level, the hallmarks, and their dynamics; at genotype
level, there are multiple levels of genetic and non-genetic
inheritance which can contribute to the hallmarks in a less
predictable fashion), and (iii) genome-mediated macro-cellu-
lar evolution (since the genome is the platform that organizes
emergent properties and passes system inheritance, genome-
level alteration is the driving force to achieve the evolution of
new systems rather than individual features/hallmarks,

despite that lower-level genetic changes can influence
genome-level changes).25,35,36

Significantly, such simple framework can solve many well-
known paradoxes in the field. First, various types of genomic
and non-genetic variation are not just “genomic errors,” but
these serve the important biological functions of stress
response and short-term adaptation. As a trade-off, they also
contribute to the increased potential for cancer in the long-
term.47,48

Second, most individual runs of cancer evolution are not
successful within the human body due to the multiple levels
of system constraint and the low probability of the “perfect
storm” required by cancer to become clinically significant.1

Breakdown of system constraint (for example through the
aging process or prolonged high stress cellular conditions) is
the major contributing factor for successful cancer evolution.
Since somatic cell evolution relies on inheritance, and the
genome defines the system inheritance,24 genome alterations
become the common drivers for somatic evolution. To reduce
the likelihood of cancer evolution, stabilizing the normal
genome is the key. This idea is clearly supported by the func-
tion of sex, as the constraint of genome integrity established
during sexual reproduction ensures species identity.77–79

When the system is unstable, generation of highly diverse
cell populations with seemingly endless potential is possible,
increasing the probability to form the perfect storm. As a
result, the power of prediction using cancer hallmarks
becomes very limited.

Third, there is inconsistency between “part character-
ization” (such as studying an individual hallmark and its
molecular elements) and evolutionary selection based on the
entire system (such as estimating the overall heterogeneity-
defined evolutionary potential).9 We have referred such
inconsistency as a knowledge gap.31 Interestingly, common
molecular approaches in fact hugely contribute to this gap.
In addition to the limitation of the reductionist approach,30

many molecular understandings are derived from experimen-
tal systems that are based on some key assumptions. For
example, some assume that cancer progression is like the
normal development process where stepwise molecular events
can be identified. Others assume identified molecular mecha-
nisms based on homogeneous cell populations and average
profiles can apply to patients in the clinic. However, the fact
that cancer is typically highly heterogeneous (especially at the
genome level, which is drastically different from the develop-
ment process or normal physiological conditions),32,33,40,80,81

and that cancer evolution is a stochastic process35,36 makes
some molecular information less significant in terms of
understanding the disease. In a sense, most of the molecular
mechanisms we know perhaps are all correct (in the sense of
representing a possibility under certain conditions) but not
very useful in the clinic (due to the low penetration in the
patient population and evolutionary dynamics complexity).

Fourth, the movement to increase molecular resolution and
collecting more and more high-resolution data needs to be
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questioned. By discussing the limitation of focusing on indi-
vidual hallmarks of cancer, we are actively promoting that
lower-level genetic alteration is less effective for cancer evolu-
tion where punctuated evolution is achieved by genome
replacement with much less predictability. Thus this high level
of complexity can only be appropriately understood by meas-
uring genome heterogeneity, overall stability/instability status
and evolutionary potential of the disease to develop estimates
of treatment response and disease progression.33,34,47

With this new understanding, we need to divert our
efforts from creating linkages that do not translate well to the
clinic and instead move forward to studying cancer as a
macro-cellular evolutionary process. This would include
accounting for system constraint, population behavior, and
overall tumor management rather than aggressively targeting
and eliminating cancer cells. Experimental trials applying

adaptive therapy, where treatment dosage is regulated in
order to maintain a stable tumor burden, have shown prom-
ise over maximum tolerated dose regimens.82,83 In order to
take the next step in improving cancer diagnosis and treat-
ment, focus must shift toward the maintenance of disease sta-
bility as many attempts to eliminate cancer have fallen short
while perhaps inadvertently promoted further cancer macro-
cellular evolution. To achieve this goal, clearly, new strategies
beyond what the hallmarks of cancer have offered are
urgently needed.
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Chromosomal instability (CIN) represents a com-
mon feature in the majority of cancers. Despite
that the search for specific molecular mechanisms
linked to the causation or consequences of can-
cer has become very popular in cancer research,
there is no general conceptual framework that
unifies the observed diverse molecular findings.
By applying the genome theory of cancer evolu-
tion, we briefly define and clarify CIN, synthesise
its importance in macro-cellular evolutionary selec-
tion, unify diverse molecular mechanisms under
the evolutionary mechanism of cancer and dis-
cuss its potential implications. Understanding the
relationship of stress, CIN and genome-mediated
cancer evolution offers clarity and direction to
researchers, and monitoring CIN within an evolu-
tionary context can provide valuable clinical infor-
mation for determining treatment administration
and patient prognosis.

Introduction
Chromosomal instability (CIN) in cancer has recently become a
hot research topic (Schmutte, 2005; Heng et al., 2006, 2011a,
2013a, b; Ye et al., 2007; Pfau and Amon, 2012; Burrell et al.,
2013). Given the fact that chromosomal aberrations overwhelm-
ingly exist in the majority of cancer types, this should not sur-
prise anyone. However, just a few years back, CIN research has
been rather limited. The research scope was mainly focused on
chromosome instability syndromes (such as Bloom syndrome
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and ataxia telangiectasia) and associated DNA damage/repair
pathways, and chromosomal instability has been considered the
direct consequence of specific cancer gene mutations. Influenced
by this thinking, the contribution of CIN in cancer evolution has
been largely ignored, as researchers were most interested in char-
acterising gene mutations that could be directly linked to CIN. As
for how CIN could stochastically promote cancer evolution, and
especially how general stress can elevate CIN and contribute to
sporadic cancer, little was known.

In recent years, the situation has drastically changed. The
importance of the karyotype was realised with the discovery of
system inheritance. The chromosome is not just the vehicle of
genes, but rather the genetic organiser that determines the genetic
network structure by maintaining the physical interactions among
genes within the three-dimensional nucleus. More specifically,
the role of the genome topology is to provide the framework
under which the genetic network is governed. In other words,
the karyotype defines the system inheritance or blueprint of
an organism, whereas individual genes/epigenes only represent
the ‘parts inheritance’, as the same genes can be reorganised to
form different systems. As a result, any significant chromosomal
alteration can change the blueprint by forming a new genome
system (Heng, 2009; Heng et al., 2011b). Such realisation
underscores the ultimate importance of stochastic chromosomal
aberrations and calls for no longer considering these seemingly
random chromosome aberrations as insignificant ‘noise’. As CIN
is the engine that produces all types of chromosomal aberrations,
which serve as the basis for genome heterogeneity in somatic
cell evolution, it is obvious that understanding CIN is the key
to understanding cancer. In addition, cancer sequencing projects
have revealed overwhelming degrees of genome heterogeneity,
challenging the framework of the somatic gene mutation theory
in cancer research that has been focused on individual gene
characterisation and ignored the utmost important contribution
of the genome alterations observed in the vast majority of cancers
(Heng, 2007; Navin et al., 2011; Stephens et al., 2011; Gerlinger
et al., 2012; Baca et al., 2013). Despite this exciting progress,
there are many issues that must be discussed in this rapidly
moving field. In this article, we briefly define and classify CIN
in the context of cancer evolution.

eLS © 2015, John Wiley & Sons, Ltd. www.els.net 1
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What Is CIN, and Why Is It the Key
Driver of Cancer?

CIN can be defined as an increased rate of gross chromosomal
alterations (or altered karyotypes) within a given cell pop-
ulation. These alterations range from numerical aberrations
(e.g. aneuploidy and polyploidy), structural aberrations (e.g.
translocations, deletions and many more unclassified types)
(Table 1) or a combination of both. Loss of heterozygosity

(LOH) and copy number variation (CNV) could also be included
when these involve large sequence sizes.

To understand why CIN is so commonly detected in most can-
cers, one needs to appreciate the pattern of cancer evolution and
how CIN serves as the common driving force in cancer evolution.
First, as illustrated by an in vitro immortalisation model, the two
phases of somatic cell evolution (punctuated and stepwise) were
initially observed during the immortalisation process (Heng et al.,
2006). Such cyclical phase transition was also detected from
cellular transformation, metastasis and drug resistance through

Table 1 Examples of karyotypic abnormalities

Category Type References

Structural Translocation
Deletion
Insertion
Inversion
Duplication
Triplication
Quadruplications
Ring chromosomes
Fission
Fragile sites
Dicentric chromosomes
Derivative chromosomes
Telomeric associations

ISCN 2013: An International System for Human Cytogenetic
Nomenclature, eds Shaffer LG et al. Basel: Karger

Premature chromosome
condensation (or pulverisation)

Johnson RT & Rao PN. (1970). Nature 226(5247): 717–722

Micronuclei Fenech M et al. (2011). Mutagenesis 26(1): 125–132
Multipolar mitosis Gisselsson D. (2001). Atlas Genet Cytogenet Oncol Haematol 5(3):

236–243
Chromosome bridge Gisselsson D. (2001). Atlas Genet Cytogenet Oncol Haematol 5(3):

236–243
Numerical Aneuploidy

Polyploidy
Endopolyploidy

ISCN 2013: An International System for Human Cytogenetic
Nomenclature, eds Shaffer LG et al. Basel: Karger

Non-traditional/
Newly identified

Free chromatin Heng HQ et al. (1988). Mutat Res 199(1): 199–205.
Heng HH et al. (1992). Proc Natl Acad Sci U S A 89(20): 9509–9513.
Heng et al. (2013b)

Defective mitotic figures Heng HQ et al. (1988). Mutat Res 199(1): 199–205.
Haaf T & Schmid M. (1989). Chromosoma 98(2): 93–98.
Smith L et al. (2001). Proc Natl Acad Sci U S A 98(23): 13300–13305.
Heng HH et al. (2004). Cell Chromosome 3(1): 1

Sticky chromosomes Heng et al. (2013b)
Unit fibres Heng HQ et al. (1988). Nucleus 30: 2–9
Chromosome fragmentation
(C-Frag)

Stevens et al. (2007)

Genome chaos/karyotype chaos Heng et al. (2006)
Duesberg P. (2007). Sci Am 29(8): 783–794.
Heng (2007)
Liu et al. (2014)

Karyoplast budding Walen KH. (2005). Cell Biol Int 29(12): 1057–1065
Unclassified Nuclei with small holes Heng et al. (2013b)

Giant nuclei Heng et al. (2013b)
Irregular interphase morphology Heng et al. (2013b)

Reproduced with permission from Horne et al. (2015a) © Atlas of Genetics and Cytogenetics in Oncology and Haematology.
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chaotic genome formation (Heng et al., 2013a; Horne et al.,
2015b). Recently, various cancer genome sequencing studies
have confirmed the punctuated phase (Wang et al., 2014; Sot-
toriva et al., 2015). Importantly, the punctuated phase is linked to
genome replacement mediated macro-cellular evolution, whereas
the stepwise phase is linked to gene/epigene mutation-mediated
micro-cellular evolution (Heng et al., 2006; Klein, 2013; Heng,
2015). The fact is, without triggering CIN, even some powerful
oncogenes will fail to initiate cancer.

Second, CIN has been directly linked to various stress con-
ditions (genetic and non-genetic alike) (Stevens et al., 2011a)
as well as tumourigenicity and aggressiveness (Ye et al., 2009).
CIN-induced genome dynamics reflect as an elevated transcrip-
tome (Pavelka et al., 2010; Stevens et al., 2014). The level of
transcriptome dynamics was also associated with karyotype sta-
bility. Interestingly, during phases of punctuated evolution where
karyotypes are highly unstable, transcriptomes observed were
also unstable, suggesting the linkage between CIN and functional
heterogeneity. It is important to note that each run of an immortal-
isation model resulted in different end products (i.e. karyotypes
and transcriptomes), suggesting that each run of cancer evolution
is different, without common drivers (Stevens et al., 2014). Thus,
high levels of CIN can stochastically provide ample opportunities
for cancer evolution.

Third, increased CIN is associated with the increased success
of outliers (Abdallah et al., 2013). When CIN is high, cellular
features become highly heterogeneous within the cell population,
including individual cell growth, transcriptome and cell death
(Abdallah et al., submitted). CIN, especially under highly stress-
ful conditions, can significantly increase the odds and speed of
outlier success. This has huge implications for drug resistance.

Considering these findings, the true value of CIN is to increase
the evolutionary potential for precancerous and cancer cells. As
the key for cancer evolutionary success is being different from
normal cells (for effective selection), CIN becomes the common
driver for cancer evolution, and especially for macro-cellular
evolution. This conclusion fits well with many important obser-
vations, such as the strong correlations between CIN levels and
tumourigenicity (Ye et al., 2009), tumour grade, metastasis, drug
resistance and poor prognosis (Sheffer et al., 2009; Heng et al.,
2013a).

Whether or not CIN is a good or bad index of cancer for-
mation has been a source of puzzlement. On one hand, CIN is
present in nearly all cancers and is commonly observed during
key transitional events (e.g. immortalisation, metastasis and drug
resistance), supporting its important contribution to cancer. On
the other hand, CIN in cancer has been associated with poor pro-
liferation in experimental models (Pfau and Amon, 2012), which
may suggest that CIN could also slow down cancer formation
and even could be a therapeutic avenue based on its association
with slower tumour cell growth. We have previously discussed
the relationship between CIN and poor proliferation using the
NCCA/CCA cycle (Ye et al., 2007). It is clear that less CIN
is often associated with a growth advantage but with a survival
disadvantage. In other words, genome instability ensures survival
by providing a wide variety of genomes, even though not all will
be fit for a particular environment at a particular time (resulting in
slower growth as a trade-off). The key here is generating survivors

with different genomes and maximising the odds (or diversity) for
cancer cell survival (gene mutations alone are not enough). This
sharply contrasts with the relationship between genome stability
and rapid proliferation that occurs after macro-cellular evolution-
ary selection. The importance of CIN also reinforces the idea that
cancer evolution is not just about proliferation but the emergence
of new genome-defined cellular systems (Heng, 2015).

What Are the Common Types of
Chromosomal Variations Indicating
CIN, and Why It Is Challenging to
Monitor CIN?

CIN can be classified as structural and/or numerical CIN (Heng
et al., 2006; Bayani et al., 2007). Numerical CIN is deter-
mined by gain or loss of whole chromosomes or fractions of
chromosomes, whereas structural CIN is determined by struc-
tural non-clonal chromosome aberrations. Even though most
researchers are familiar with classical chromosomal aberrations
such as translocations and aneuploidy, the list of structural aber-
rations reflecting CIN is extensive and highly diverse. Following
the realisation of the importance of NCCAs (Heng et al., 2006),
the list of NCCAs has quickly expanded. It includes familiar
aberrations such as simple translocations, complex duplications,
deletions, double-minute chromosomes, homogeneously staining
regions, multicentric chromosomes, ring chromosomes, lagging
chromosomes, small supernumerary marker chromosomes and
multi-radial chromosomes (Ye et al., 2007; Stevens et al.,
2007, 2011b). In addition, there are recently discovered, often
ignored and unclassified aberrations including defective mitotic
figures, chromosome fragmentation, free chromatin, sticky
chromosomes, micronuclei, genome chaos (which includes
recently characterised subtypes such as chromothripsis and chro-
moplexy), giant nuclei and other abnormal nuclear morphologies
(Stephens et al., 2011; Baca et al., 2013; Heng et al., 2013a, b)
(Table 1; Figure 1).

Many NCCAs have been continually ignored because of their
un-clonal nature. One major conceptual error has been using
CCAs to monitor CIN (as NCCAs were previously considered
insignificant genetic noise). In fact, quite the opposite, CCAs
represent stability rather than instability (Heng et al., 2013a).
Furthermore, the unfamiliarity of many structural NCCAs has
further lowered estimations of CIN in monitoring cancer cell
populations. More importantly, most NCCAs are undetectable by
averaging molecular methods, and single cell analysis is required.
This is the reason why classical cytogenetic analyses are needed
to study CIN. Finally, to correctly monitor CIN, a large number of
cells are necessary. For our SKY analyses, for example, 50–100
individual cells are needed. This poses an additional challenge
for using single-cell sequencing to study CIN, as the costs could
be very high compared with cytogenetic methods. Unfortunately,
many current molecular cytogenetic methods such as array CGH
are not suitable to profile CIN because of their nature of profiling
the average of the cell population.

eLS © 2015, John Wiley & Sons, Ltd. www.els.net 3
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Figure 1 The phenomenon of genome chaos generating new genetic systems. When CIN becomes extremely elevated under high stress, formation of
chaotic genomes will be induced. The drastically altered genome will result in a new system with a newly formed network structure. (a) Spectral karyotype
(SKY) image of genome chaos where massive translocation events are detected within a chaotic genome following drug treatment. These newly formed
giant chromosomes are possibly derived from complex chromosomal fusion following chromosome fragmentation, with each colour representing their
chromosomal origin. (b) The reverse DAPI image of the same mitotic figure in (a). (c) Schematic demonstrating how various forms of genome chaos may
occur. Normal chromosomes are shown at the top, with each letter within the chromosomes representing a distinct region. Following exposure to sufficient
degrees of various stressors, the genome undergoes partial fragmentation. Following fragmentation, regions are recombined and rejoined, resulting in the
genome chaos demonstrated at the bottom. Newly formed chimeric chromosomes can be a mixture of various chromosomal origins, or occasionally from
a single chromosome. (d) Changes in genome topology alter genetic network structure. For simplicity, two chromosomes are drawn within the nucleus,
representing the genome. Genes are designated A, B, C, D and E within the chromosomes. When a translocation occurs, the genome topology is altered,
affecting the physical relationship between chromatin domains and changing the overall genetic network structure. As a result, the genetic network changes
(indicated by the altered relationship among proteins A, B, C, D and E). Thus, drastically altered genomes (products of genome chaos) represent new genome
systems, and understanding this process provides insight into macro-cellular cancer evolution. Reproduced with permission from Heng et al., 2011a,b ©
Elsevier.

What is the Mechanism – The
Molecular and Evolutionary Causes
and Consequences – of CIN?

Gene mutations/chromosomal
machinery aberrations and CIN
CIN research is frequently aimed at identifying key genetic fac-
tors responsible for the maintenance of genetic integrity. On
the basis of the gene centric concept of genetics, initial efforts
have been focused on identifying gene mutations and molec-
ular pathways that lead to replication and DNA repair errors.

Well-known examples include genome instability syndromes
with characterised gene mutations, such as mutations in the
RecQ helicases in Bloom, Werner and Rothmund-Thomson syn-
dromes (van Brabant et al., 2000), mutations in genes involved
in DNA double-strand break repair in Nijmegen breakage syn-
drome (D’Amours and Jackson, 2002) and gene mutations that
are associated with hereditary cancers such as BRCA1 or BRCA2
(in early onset of breast cancer) and in some familial cancer types
such as p53 mutation in Li-Fraumeni syndrome. In addition to
these rare cancers, DNA replication errors are extensively studied
for the understanding of CIN and cancer. Many molecular associ-
ations have been made to CIN, including genes involved in DNA
repair, cell cycle regulation and cell death pathways (Table 2).

4 eLS © 2015, John Wiley & Sons, Ltd. www.els.net
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Table 2 Classification of major contributors of chromosomal instability

Type/definition Categories
(genetic factor examples)

References Challenges/limitations

Type I mechanisms
Molecular factors hold a
direct causative relationship
with CIN. Includes factors
that are directly linked to
the maintenance of genome
integrity

Chromosome integrity Low clinical prediction value;
having a type I CIN
mutation does not make
cancer a certainty.
Rare, do not explain
sporadic cancers

Chromosome
condensation/decondensation
Chromosome segregation (BUB1)
Chromosome fragment transfer
Cytokinesis
Telomere shortening

Schmutte C. (2005). eLS.
John Wiley & Sons, Ltd:
Chichester

Centrosome instability/duplication
(TP53, RB1, APC)
Inhibition of retrotransposons
Incomplete mitotic cell death
Chromosome repair

Non-homologous end joining
Homologous end joining

3D chromatin domain interaction
Fragile sites
Highly transcribed DNA sequences

Gisselsson D. (2001). Atlas
Genet Cytogenet Oncol
Haematol 5(3): 236-243

Chromosome breakage-fusion-
bridge cycles (TP53, MDM2)
DNA integrity
DNA replication

Gisselsson D. (2001). Atlas
Genet Cytogenet Oncol
Haematol 5(3): 236–243

Cell cycle checkpoint
pathways/kinases defects (TP53,
ATM, CHK2, MAD2, BUB1, RB1)

Gisselsson D. (2001). Atlas
Genet Cytogenet Oncol
Haematol 5(3): 236–243

Schmutte C. (2005). eLS.
John Wiley & Sons, Ltd:
Chichester

DNA repair
Mismatch repair (MLH1, MSH2,

MSH6, PMS2)
Nucleotide excision repair

(XPA-XPG genes, XPV)
Base excision repair (MYH)

Perera S & Bapat B. (2007).
Atlas Cytogenet Oncol
Haematol 11(2): 155–164

DNA methylation status
maintenance
Hypermethylation
Hypomethylation
Histone modification

Type II mechanisms
General system dynamics
stress response as the result
of various factors (less molec-
ular specificity) that do not
display a direct causative
relationship with CIN. Linked
to a CIN phenotype under
certain conditions. More com-
mon than type I mechanisms
in cancers. Responses pro-
vide evolutionary adaptation
advantages, such as increased
fuzzy inheritance and overall
disease robustness

Physiological stresses
Ageing
Metabolism
Hormones
Inflammation
Wound healing
Environmental stresses
Therapeutics
Infection
Toxins
Pollution

High complexity and
dynamics make it difficult
to determine specific
contributions to CIN and
observe direct causation.
Stochasticity negatively
impacts clinical prediction
value of specific
mechanisms and requires a
holistic, evolutionary
understanding

Responses with adaptive and
survival advantages
Immunological diversification
Liver cell adaptation
Genome chaos under crisis

eLS © 2015, John Wiley & Sons, Ltd. www.els.net 5



www.manaraa.com

	 117	

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Chromosomal Instability (CIN) in Cancer

With the increased appreciation of chromosomal aberrations
in cancer, the research focus on CIN has begun to shift towards
chromosome machinery itself, and gene mutation leading to the
generation of chromosomal abnormalities is under investigation.
It is understood that defects in key genetic pathways result in
chromosomal aberrations as a consequence or by-product, which
contribute to the cancer formation. Examples include the linkage
of the BUB1B mutation to mosaic variegated aneuploidy and
predisposition to various types of cancer (Hanks et al., 2004).
Multiple causes of abnormal chromosomal machinery have been
identified including mitotic checkpoint defects, cohesion loss and
merotelic kinetochore attachment (Janssen and Medema, 2013).

In addition, other stages of the chromosomal cycle including
chromosome condensation defects are also involved. It is thus
easy to predict that many more gene mutations will be identi-
fied that are responsible for chromosomal integrity (Heng et al.,
2013a).

However, explanation power based on direct linkage between
CIN and DNA/chromosomal machineries is limited, especially
when applying this knowledge to explain the majority of sporadic
cancer cases. For instance, germline mutations of BUB1B are
rare in human tumours, and individuals with DNA repair gene
mutations can be cancer-free even at older ages. Furthermore,
there is a paradoxical effect of CIN on cancer, as aneuploidy can
function either to inhibit or to promote tumourigenicity (Weaver
and Cleveland, 2007). Obviously, there seems to be another
unknown layer of factors, which is more important for CIN.

General stress, adaptation and the
evolutionary mechanism of CIN
The above-mentioned reasoning has led to a new effort to search
for the common mechanism of CIN in the majority of spo-
radic cancers, which might not be directly linked to common
driver mutations for a small subgroup of patients. On the basis
of the facts that, the CIN phenotype can be linked to a large
number of genes in yeast (Kolodner et al., 2002), and various
stresses (caused by genetic or non-genetic factors) can be linked
to CIN (Heng et al., 2006; Stevens et al., 2011a), the model of

stress-CIN-adaptation was proposed, which classifies CIN into
two types (Heng et al., 2013a) (Table 2). Type I includes mech-
anisms that are directly linked to the maintenance of genome
integrity throughout the DNA and chromosomal cycle, includ-
ing the chromosomal machinery, checkpoints, and repair systems.
Type I mechanisms are often associated with CIN syndromes and
are straightforward because of the direct relationship between
the identified factor(s) and CIN. However, mutations in type I
genes are rare, and they do not explain sporadic cancers. Type
II CIN mechanisms are those that do not have a direct molec-
ular causative explanation. However, they are clearly linked to
a CIN phenotype under certain conditions. It was reasoned that
type II mechanisms are more common than type I mechanisms
because of the infrequency of type I mechanisms in sporadic can-
cers. Type II mechanisms are frequently linked to non-genetic
factors such as the micro-environment and physiological pro-
cesses (e.g. ageing, hormones, inflammation and metabolic sta-
tus). This understanding has integrated environmental impact into
the CIN-cancer framework. To understand the general mecha-
nism of type II CIN, one needs to consider the homeostasis of
the entire system. Each individual defect to the whole system
(genetic or non-genetic) can be considered a stress (Figure 2),
and this understanding links both types of CIN. Establishing this
link and recognising the importance of type II CIN in fact exposes
the limitations of type I CIN in cancer.

Another key is to understand the potential benefit of CIN at
the cellular level (depending on the context, any change could
be good or bad). Increased cellular heterogeneity as a result of
CIN could provide the robustness necessary to perform complex
functions and/or survive against environmental stress. Thus, as
we have recently discussed, CIN plays a key role in an evolu-
tionary trade-off (Horne et al., 2014). Given the vast karyotypic
heterogeneity observed in normal, healthy tissues coupled with
stress-induced CIN (from a wide variety of internal and exter-
nal stresses), CIN serves as an adaptive response necessary for
both performing complex cellular and organ functions (e.g. liver
detoxification, as the healthy liver displays polyploidy) as well as
withstanding the stress that comes as a result of these functions.
However, the trade-off is that stress-induced CIN can also lead to
the onset of common diseases including cancer.

Type I
CIN

Type II
CIN

NCCA/
CCA
cycle

Macro-
evolution
mediated

by
genome
change

Figure 2 Diagram illustrating the relationship among stress, diverse individual molecular mechanisms of cancer, CIN, and stochastic genome
change-mediated cancer evolution. The hallmarks of cancer (adapted from Hanahan and Weinberg, 2011) were used to represent different pathways
linked to cancer. Stress is the motor that turns the pathway wheel. Selection of a given pathway as a mechanism of cancer progression is represented by
the arrow which selects a pathway based on probability. Individual pathways can directly compromise genome integrity (type I) or indirectly jeopardise
genome integrity through general stress (type II). Both types I and II CIN are linked to elevated NCCA frequency. Stress-induced CIN is the key generator of
evolutionary potential leading to macro-cellular evolution. Reproduced with permission from Heng et al., 2013a © Springer Science+Business Media.

6 eLS © 2015, John Wiley & Sons, Ltd. www.els.net



www.manaraa.com

	 118	

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Chromosomal Instability (CIN) in Cancer

Departing from a popular stance on CIN, which is that CIN is
the consequence (or by-product) of gene-level deregulation, we
now understand that CIN provides necessary heterogeneity for
both normal tissue and for disease, and it can result from gene
mutation and other genetic/non-genetic stresses. As CIN creates
a high level of robustness for cancer, making it formidable against
treatment, immunological attack, competition with healthy tis-
sues and so on, CIN is the key driver of cancer and the most
important player in the equation of stress-adaptation-genome
replacement-cancer evolution. Now it is clear that the previously
unknown layer of complexity above CIN is the evolutionary plat-
form, as the power of CIN has to be within the context of cancer
evolution. For a specific well-defined or controlled case, whether
elevated CIN is good or not depends on the biological context,
as illustrated by instances where CIN is associated with lower
cellular proliferation rates. As elevated CIN is also associated
with cell death, some researchers have called for targeting CIN
as a therapeutic strategy (Roschke and Kirsch, 2010). However,
in general, elevated CIN will favour evolutionary selection in
real cancer cases (as opposed to in more linear animal models).
Despite increased cell death, elevated CIN will favour the forma-
tion and success of outliers, some of which could result in rapid
macro-cellular cancer evolution (Abdallah et al., 2013; Liu et al.,
2014; Heng, 2015).

Fuzzy inheritance and CIN
The realisation that CIN plays an important role in cellular adap-
tation also leads to a new concept; as CIN is not simply an
erroneous response to stresses, and there might be an internal
mechanism for creating and/or maintaining system heterogene-
ity. Mutation rates are too low to fulfil the goal of generating
so much variation under stress. Using single-cell analysis on cell
populations with known degrees of CIN, karyotype inheritances
were carefully observed and compared, and the underlying mech-
anism was termed ‘fuzzy inheritance’ (Heng, 2015, Heng et al.,
2015; Horne et al., 2015b; Abdallah et al., submitted). In nor-
mal tissue, there is a lower baseline of NCCAs, where alteration
is often minimal with limited chromosome stochasticity; during
high-dose treatment-induced genome chaos, however, the fuzzi-
ness of a cell population could be reached to its maximum level,
where daughter cells no longer display the same karyotype of
the mother cell. It is suggested that genome chaos represents a
drastic survival strategy for cancer cells, and the high level of
fuzzy inheritance plays an essential role for cancer cell survival.
This hypothesis states that low levels of fuzzy inheritance are use-
ful for micro-adaptation, whereas high levels of fuzzy inheritance
are key for macro-cellular evolution. Even though CIN can be
erroneously generated, many instances are not the result of error
but are generated by this mechanism to produce necessary diver-
sity! Further examination of this hypothesis is now underway.

Together, the above-mentioned analysis of CIN addresses
many important and puzzling questions (Janssen and Medema,
2013). Is CIN an indicator of tumourigenesis? Absolutely. Does
CIN mainly provide an enhancing effect to promote transfor-
mation? CIN does not just promote transformation, but rather
has a determining role. Is CIN a mere consequence of tumour

formation? Despite that CIN also reflects tumour status, it is the
driver of cancer.

Potential Implications of CIN in
Cancer Research and Treatment
As no individual molecular mechanism serves as a clear gen-
eral mechanism for CIN, focusing on CIN within an evolution-
ary framework rather than dissecting all potentially involved
processes makes sense for both cancer research and its implica-
tions. Further, when high levels of CIN are involved, the con-
tributions of driving genes or pathways will not be fixed (and
will likely conflict within the tumour cell population) owing to
rapid system change and heterogeneity. We have previously intro-
duced the evolutionary mechanism of cancer (EMC) to account
for this diversity, which is equal to the sum of all individual
molecular mechanisms. The EMC can be detailed in three steps:
(1) stress-induced genome system instability; (2) this instabil-
ity results in genetic heterogeneity at multiple levels, providing
necessary diversity for selection and (3) somatic cell evolution,
importantly macro-cellular evolution, where system replacement
results in breakdown of system constraints (e.g. tissue architec-
ture and immune system). This concept generalises all involved
genetic and non-genetic factors, as long as they provide sufficient
stress to significantly destabilise the system. Further, as CIN uni-
fies the wide variety of dynamic pathways (and thus unifies the
hallmarks of cancer), we have previously argued that CIN repre-
sents the key hallmark of cancer (Horne et al., 2015c). From this
holistic concept, it is important to shift our research/clinical focus
onto a higher level (i.e. genome level) when dealing with CIN, as
a wide variety of molecular factors are involved with varied and
dynamic contributions. According to the multiple level landscape
model of cancer, in order to reach the macro-cellular phase of
cancer evolution, genome replacement is necessary (Heng et al.,
2011a, 2013a; Huang, 2013).

It is important to note that, as CIN impacts dynamics at multiple
genetic levels (genomic, transcriptomic, etc.), reducing genome
stability also contributes to gene-level instability (Stevens et al.,
2011b). While this certainly has a micro-cellular evolutionary
role in altering given systems, genome-level change plays a larger
macro-cellular evolutionary role by creating new systems, and
this system replacement achieved by genome-level change is
essential for cancer evolution. Thus, genome-level information
when profiling tumour subtypes and/or predicting drug response
holds the highest clinical value.

Interestingly, many normal, healthy tissues display genome
alterations; examples include liver polyploidisation, skeletal
muscle, thyroid gland, blastocyst mosaicism, blood, urothelium
and Purkinje neurons, as well as detected stochastic karyotypic
changes as the result of environmental and physiological chal-
lenges (Biesterfeld et al., 1994; Celton-Morizur and Desdouets,
2010; Davoli and de Lange, 2011; Fragouli and Wells, 2011).
Recently, based on these phenomena, it was suggested that
CIN-mediated genome heterogeneity likely plays an important
role for cellular adaptation (Horne et al., 2014). As a trade-off,
cancer can be considered a price to pay for adaptation, as elevated
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instability can also lead to various diseases (Heng et al., 2015).
Thus, it is important to investigate the overall benefits/harms of
CIN, as well as whether certain types or degrees of CIN (e.g.
numerical CIN and complex structures) are more effective at
breaking down system constraint en route to a cancer phenotype
(i.e. the perfect storm) than other aberrations, which remain
under system constraint and contribute to healthy, complex
cellular and organ function.

One example of this is through studying a balanced (rather than
highly aggressive) approach of cancer therapeutics. As cell death
induction could inadvertently lead to CIN (Stevens et al., 2011a;
Liu et al., 2014), it is crucial that efforts be made to prioritise
cancer genome system constraint over the current clinical goal
of maximising tumour cell death (i.e. through maximum toler-
ated doses). While initially effective (i.e. high cell death count),
high-dose therapeutics induce genome chaos (Liu et al., 2014),
resulting in increased genomic heterogeneity. This increase in
evolutionary potential is coupled with the induced formation of
aggressive outlier subpopulations (i.e. through genome reorgani-
sation), which ultimately drive rapid tumour cell growth (Horne
et al., 2015a; Horne et al., submitted). This process serves as
a general mechanism of cancer drug resistance and presents a
trade-off of the current maximum tolerated dose strategy, where
early success (i.e. high initial cell killing) comes with long-term
detriment (i.e. rapid relapse and drug resistance). The strategy
of reducing CIN-induced genome heterogeneity fits well with
some alternative therapies such as adaptive and metronomic ther-
apies, which have shown promise in early trials and call for lower
dosages than standard care (Kerbel and Kamen, 2004; Gatenby
et al., 2009).

The CIN-mediated dynamic nature of the cancer genome also
presents a problem for specific target-based therapies, which have
been popular following cancer genome sequencing efforts (Horne
et al., 2013). As there is no fixed cancer genome, driver genes can
vary between cancer cells and switch roles at any given time. This
poses a major challenge to the success of targeting therapies: as
long as CIN is involved, administration of any agent will result
in off-target effects despite initial high levels of cell death, while
paradoxically initiating another round of CIN.

Finally, monitoring CIN within an evolutionary context can
provide valuable information for both cancer research and treat-
ment. We have demonstrated the utility of the NCCA/CCA index
in understanding the evolutionary potential of the disease at a par-
ticular time. Measuring CIN in such a manner can help identify
the evolutionary phase of the disease, and this information is
useful in determining treatment administration and patient prog-
nosis. For example, we could reduce tumour cell growth by apply-
ing constraint through careful dosage administration in order to
maintain the less dynamic phase of cancer evolution. In other
words, the key to more successful cancer treatment (i.e. improved
patient quality of life and longer life span) is to slow down
the micro-evolutionary phase without triggering genome chaos.
Some important questions include should patients with high or
low degrees of CIN undergo identical, aggressive treatment reg-
imens? How can we use CIN in classifying patients into sub-
groups? And lastly, should we continue efforts to identify genes
that can be linked to elevated CIN knowing that there are so many
non-genetic factors that are also involved?
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ABSTRACT 

EFFECTIVE DRUG TREATMENT INDUCES DRUG RESISTANCE THROUGH 
RAPID GENOME ALTERATION-MEDIATED CANCER EVOLUTION 
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Degree: Doctor of Philosophy 

 The central paradox associated with current cancer therapeutic strategies 

is initially effective treatment, which eliminates a high tumor cell count, 

consistently results in successful drug resistance.  Mathematical and evolutionary 

modeling have previously suggested that therapeutic intervention could provide 

selective pressure for the expansion of resistant variants.  Drug-related stress 

has been associated with genome chaos, a common phenomenon in cancer 

characterized as rapid, stochastic genomic fragmentation and reorganization.  

Since cancer represents an evolutionary process, analysis within the context of 

genome-mediated cancer evolution can shed light on this key problem of 

therapeutics.  We propose that genomic change is a general response to 

therapeutics.  Drug-induced karyotypic alteration has been linked with 

transcriptomic elevation, implying that drug-induced genomic change would 

paradoxically provide an advantage for cancer cells through an increase of 

genome heterogeneity or evolutionary potential for selection.  In vivo and in vitro 
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models were tested using different therapeutic approaches, and surviving cells 

displayed altered karyotypes for each case.  To determine whether drug-induced 

genome change could provide a long-term advantage to cancer cell survival, a 

karyotypically stable colon cancer cell line was treated with chemotherapy, and 

growth patterns were followed in a series of in vitro single-cell and population-

based experiments.  Outlier treated cells displayed faster growth rates than 

untreated cells, and population-based data support that these outliers may drive 

cancer progression post-therapy.  This macro-evolutionary based, general 

mechanism of cancer drug resistance challenges the current therapeutic aim of 

maximizing cancer cell death and has great implications in the development and 

administration of future therapeutic strategies. 
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